Tuesday, December 31, 2019

Machine learning algorithms and techniques for sentiment analysis in scientific paper reviews: A systematic literature review


Abstract

Sentiment analysis also referred to as opinion mining, is an automated process for identifying and classifying subjective information such as sentiments from a piece of text usually comments and reviews.

 Supported by machine learning algorithms, it is possible to identify positive, neutral or negative opinions, being possible to rank or classify them in order to reach some kind of conclusion or obtain any type of information. 

Thus, this paper aims to perform a systematic literature review in order to report the state-of-the-art of machine learning techniques for sentiment analysis applied to texts of reviews, comments and evaluations of scientific papers.

REFERENCES

Abbasi, A., Chen, H., & Salem, A. (2008). Sentiment analysis in multiple languages. ACM

Transactions on Information Systems, 26(3), 1–34. https://doi.org/10.1145/1361684.1361685


Afzaal, M., Usman, M., Fong, A. C. M., & Fong, S. (2019). Multiaspect-based opinion classification

model for tourist reviews. Expert Systems, e12371. https://doi.org/10.1111/exsy.12371


Al-amrani, Y., Lazaar, M., Eddine, K., & Kadiri, E. L. (2018). Sentiment Analysis Using Hybrid

Method of. Journal of Theoretical and Applied Information Technology, 96(7), 1886–1895.

Retrieved from www.jatit.org


Araque, O., Corcuera-Platas, I., Sánchez-Rada, J. F., & Iglesias, C. A. (2017). Enhancing deep

learning sentiment analysis with ensemble techniques in social applications. Expert Systems

with Applications, 77, 236–246. https://doi.org/10.1016/j.eswa.2017.02.002


Baek, H., Ahn, J., & Choi, Y. (2012). Helpfulness of Online Consumer Reviews: Readers’ Objectives

and Review Cues. International Journal of Electronic Commerce, 17(2), 99–126.

https://doi.org/10.2753/jec1086-4415170204


Boudad, N., Faizi, R., Oulad Haj Thami, R., & Chiheb, R. (2018). Sentiment analysis in Arabic: A

review of the literature. Ain Shams Engineering Journal, 9(4), 2479–2490.

https://doi.org/10.1016/j.asej.2017.04.007


Choi, D., Ko, B., Kim, H., & Kim, P. (2014). Text analysis for detecting terrorism-related articles on

the web. Journal of Network and Computer Applications, 38(1), 16–21.

https://doi.org/10.1016/j.jnca.2013.05.007


Do, H. H., Prasad, P. W. C., Maag, A., & Alsadoon, A. (2019). Deep Learning for Aspect-Based

Sentiment Analysis: A Comparative Review. Expert Systems with Applications, 118, 272–299.

https://doi.org/10.1016/j.eswa.2018.10.003


Erdt, M., Nagarajan, A., Sin, S. C. J., & Theng, Y. L. (2016). Altmetrics: an analysis of the state-of-

the-art in measuring research impact on social media. Scientometrics, 109(2), 1117–1166.

https://doi.org/10.1007/s11192-016-2077-0


Fernández-Gavilanes, M., Àlvarez-López, T., Juncal-Martínez, J., Costa-Montenegro, E., &

González-Castaño, F. J. (2015). GTI: An Unsupervised Approach for Sentiment Analysis in

Twitter (pp. 533–538). https://doi.org/10.18653/v1/s15-2089


Fortuna, P., & Nunes, S. (2018). A Survey on Automatic Detection of Hate Speech in Text. ACM

Computing Surveys, 51(4), 1–30. https://doi.org/10.1145/3232676


Ganu, G. (2009). Beyond the Stars : Improving Rating Predictions using Review Text Content. Text,

1–6. Retrieved from http://www.dbmi.columbia.edu/noemie/ursa

García-Pablos, A., Cuadros, M., & Rigau, G. (2018). W2VLDA: Almost unsupervised system for


Aspect Based Sentiment Analysis. Expert Systems with Applications, 91, 127–137.

https://doi.org/10.1016/j.eswa.2017.08.049


Heydari, A., Tavakoli, M. ali, Salim, N., & Heydari, Z. (2015). Detection of review spam: A survey.

Expert Systems with Applications, 42(7), 3634–3642.

https://doi.org/10.1016/J.ESWA.2014.12.029


Hoon, L., Vasa, R., Schneider, J.-G., & Mouzakis, K. (2012). A preliminary analysis of vocabulary in

mobile app user reviews. In Proceedings of the 24th Australian Computer-Human Interaction

Conference on - OzCHI ’12 (pp. 245–248). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2414536.2414578


Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In Proceedings of the 2004

ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’04

(p. 168). New York, New York, USA: ACM Press. https://doi.org/10.1145/1014052.1014073


Lei, P., Marfia, G., Pau, G., & Tse, R. (2018). Can we monitor the natural environment analyzing

online social network posts? A literature review. Online Social Networks and Media, 5, 51–60.

https://doi.org/10.1016/j.osnem.2017.12.001


Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language

Technologies, 5(1), 1–167. https://doi.org/10.2200/S00416ED1V01Y201204HLT016


Mäntylä, M. V., Graziotin, D., & Kuutila, M. (2018). The evolution of sentiment analysis—A review

of research topics, venues, and top cited papers. Computer Science Review, 27, 16–32.

https://doi.org/10.1016/j.cosrev.2017.10.002


Mirończuk, M. M., & Protasiewicz, J. (2018). A recent overview of the state-of-the-art elements of

text classification. Expert Systems with Applications, 106, 36–54.

https://doi.org/10.1016/j.eswa.2018.03.058


Moussa, M. E., Mohamed, E. H., & Haggag, M. H. (2018). A survey on opinion summarization

techniques for social media. Future Computing and Informatics Journal, 3(1), 82–109.

https://doi.org/10.1016/j.fcij.2017.12.002


Musto, C., Semeraro, G., & Polignano, M. (2014). A comparison of lexicon-based approaches for

sentiment analysis of microblog. In CEUR Workshop Proceedings (Vol. 1314, pp. 59–68).

Retrieved from http://ceur-ws.org/Vol-1314/paper-06.pdf


Popescu, A. M., & Etzioni, O. (2007). Extracting product features and opinions from reviews. In

Natural Language Processing and Text Mining (pp. 9–28). London: Springer London.

https://doi.org/10.1007/978-1-84628-754-1_2


Rambocas, M., & Gama, J. (2013). Marketing Research: The Role of Sentiment Analysis. Retrieved

from https://pdfs.semanticscholar.org/acd0/c9f75152acd2a622be442d20f96b0a3225d4.pdf


Sabbah, T., Selamat, A., Selamat, M. H., Ibrahim, R., & Fujita, H. (2016). Hybridized term-weighting

method for Dark Web classification. Neurocomputing, 173, 1908–1926.

https://doi.org/10.1016/j.neucom.2015.09.063


Sammut, C., & Webb, G. I. (Eds.). (2010). Encyclopedia of Machine Learning. Boston, MA: Springer

US. https://doi.org/10.1007/978-0-387-30164-8


Sundermann, C., Domingues, M., Sinoara, R., Marcacini, R., & Rezende , S. (2019). Using Opinion

Mining in Context-Aware Recommender Systems: A Systematic Review. Information, 10(2),

42. https://doi.org/10.3390/info10020042


Tavakoli, M., Zhao, L., Heydari, A., & Nenadić, G. (2018). Extracting useful software development

information from mobile application reviews: A survey of intelligent mining techniques and

tools. Expert Systems with Applications, 113, 186–199.

https://doi.org/10.1016/j.eswa.2018.05.037


Ware, M., & Mabe, M. (2015). The STM Report: An overview of scientific and scholarly journal

publishing. Copyright, Fair Use, Scholarly Communication, Etc.


Webster, J., & Watson, R. T. (2002). Analyzing the Past To Prepare for the Future : Writing a

Literature Review. MIS Quarterly, 26(2), xiii–xxiii.


Zimbra, D., Abbasi, A., Zeng, D., & Chen, H. (2018). The State-of-the-Art in Twitter Sentiment

Analysis. ACM Transactions on Management Information Systems, 9(2), 1–29.

https://doi.org/10.1145/3185045


https://repositorium.sdum.uminho.pt/handle/1822/65115


No comments: