Aspect-based sentiment analysis (ABSA) is currently among the most vigorous areas in natural language processing (NLP).
Individuals, private and government institutions are increasingly using media sources for decision making.
In the last decade, aspect extraction has been the most essential phase of sentiment analysis (SA) to conduct an abridged sentiment classification.
However, previous studies on sentiment analysis mostly focused on explicit aspects extraction with limited work on implicit aspects.
To the best of our knowledge, this is the first systematic review that covers implicit, explicit, and the combination of both implicit and explicit aspect extractions.
Therefore, this systematic review has been conducted to, 1) identify techniques used for extracting implicit, explicit, or both implicit and explicit aspects; 2) analyze the various evaluation metrics, data domains, and languages involved in the implicit and explicit aspect extraction in sentiment analysis from years 2008 to 2019; 3) identify the key challenges associated with the techniques based on the result of a comprehensive comparative analysis; and finally, 4) highlight the feasible opportunities for future research directions.
This review can be used to assist novice and prominent researchers to understand the concept of both implicit and explicit aspect extractions in aspect-based sentiment analysis domain.
REFERENCES
[1] B. Liu, ‘‘Sentiment analysis and opinion mining,’’ Synth. Lectures Hum.Lang. Technol., vol. 5, no. 1, pp. 1–167, 2012.
[2] B. Pang and L. Lee, ‘‘Opinion mining and sentiment analysis,’’ Found.Trends Inf. Retr., vol. 2, nos. 1–2, pp. 1–135, 2008.
[3] A. Qazi, A. Tamjidyamcholo, R. G. Raj, G. Hardaker, and C. Standing,‘‘Assessing consumers’ satisfaction and expectations through online opin-ions: Expectation and disconfirmation approach,’’ Comput. Hum. Behav.,vol. 75, pp. 450–460, Oct. 2017.
[4] B. Pang, L. Lee, and S. Vaithyanathan, ‘‘Thumbs up: Sentiment classi-fication using machine learning techniques,’’ in Proc. Conf. EmpiricalMethods Natural Lang. Process. (ACL), vol. 10, 2002, pp. 79–86.
[5] P. D. Turney, ‘‘Thumbs up or thumbs down: Semantic orientation appliedto unsupervised classification of reviews,’’ in Proc. 40th Annu. MeetingAssoc. Comput. linguistics, 2002, pp. 417–424.
[6] B. Liu, M. Hu, and J. Cheng, ‘‘Opinion observer: Analyzing and compar-ing opinions on the web,’’ in Proc. 14th Int. Conf. World Wide Web, 2005,pp. 342–351.
[7] M. Hu and B. Liu, ‘‘Mining and summarizing customer reviews,’’ in Proc.10th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2004,pp. 168–177.
[8] W. Medhat, A. Hassan, and H. Korashy, ‘‘Sentiment analysis algo-rithms and applications: A survey,’’ AIN Shams Eng. J., vol. 5, no. 4,pp. 1093–1113, Dec. 2014.
[9] T. A. Rana and Y.-N. Cheah, ‘‘Aspect extraction in sentiment analysis:Comparative analysis and survey,’’ Artif. Intell. Rev., vol. 46, no. 4,pp. 459–483, Dec. 2016.
[10] A. Yadollahi, A. G. Shahraki, and O. R. Zaiane, ‘‘Current state of textsentiment analysis from opinion to emotion mining,’’ ACM Comput.Surv., vol. 50, no. 2, p. 25, 2017.
[11] K. Bauman, B. Liu, and A. Tuzhilin, ‘‘Aspect based recommendations:Recommending items with the most valuable aspects based on userreviews,’’ in Proc. 23rd ACM SIGKDD Int. Conf. Knowl. Discovery DataMining, 2017, pp. 717–725.
[12] Q. Liu, B. Liu, Y. Zhang, D. S. Kim, and Z. Gao, ‘‘Improving opinionaspect extraction using semantic similarity and aspect associations,’’ inProc. 13th AAAI Conf. Artif. Intell., 2016, pp. 2986–2992.
[13] L. Zhang, S. Wang, and B. Liu, ‘‘Deep learning for sentimentanalysis: A survey,’’ 2018, arXiv:1801.07883. [Online]. Available:http://arxiv.org/abs/1801.07883
[14] B. Agarwal, R. Nayak, N. Mittal, and S. Patnaik, Deep Learning-BasedApproaches for Sentiment Analysis. Singapore: Springer, 2020.
[15] A. Abdi, S. M. Shamsuddin, S. Hasan, and J. Piran, ‘‘Deep learning-basedsentiment classification of evaluative text based on multi-feature fusion,’’Inf. Process. Manage., vol. 56, no. 4, pp. 1245–1259, Jul. 2019.
[16] H. Ghulam, F. Zeng, W. Li, and Y. Xiao, ‘‘Deep learning-based senti-ment analysis for roman urdu text,’’ Procedia Comput. Sci., vol. 147,pp. 131–135, Jan. 2019.
[17] A. R. Pathak, B. Agarwal, M. Pandey, and S. Rautaray, ‘‘Applicationof deep learning approaches for sentiment analysis,’’ in Deep Learning-Based Approaches for Sentiment Analysis. Singapore: Springer, 2020,pp. 1–31.
[18] A. Ahmet and T. Abdullah, ‘‘Recent trends and advances in deeplearning-based sentiment analysis,’’ in Deep Learning-Based Approachesfor Sentiment Analysis. Springer, 2020, pp. 33–56.
[19] A. Kumar and A. Sharan, ‘‘Deep learning-based frameworks for aspect-based sentiment analysis,’’ in Deep Learning-Based Approaches for Sen-timent Analysis. Singapore: Springer, 2020, pp. 139–158.
[20] H. Xu, F. Zhang, and W. Wang, ‘‘Implicit feature identification in chinesereviews using explicit topic mining model,’’ Knowl.-Based Syst., vol. 76,pp. 166–175, Mar. 2015.
[21] A. Qazi, R. G. Raj, G. Hardaker, and C. Standing, ‘‘A systematic literaturereview on opinion types and sentiment analysis techniques: Tasks andchallenges,’’ Internet Res., vol. 27, no. 3, pp. 608–630, Jun. 2017.
[22] A. Qazi, F. Hussain, N. A. Rahim, G. Hardaker, D. Alghazzawi,K. Shaban, and K. Haruna, ‘‘Towards sustainable energy: A systematicreview of renewable energy sources, technologies, and public opinions,’’IEEE Access, vol. 7, pp. 63837–63851, 2019.
[23] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, andS. Linkman, ‘‘Systematic literature reviews in software engineering—Asystematic literature review,’’ Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15,Jan. 2009.[24] K. Schouten and F. Frasincar, ‘‘Survey on aspect-level sentiment anal-ysis,’’ IEEE Trans. Knowl. Data Eng., vol. 28, no. 3, pp. 813–830,Mar. 2016.
[25] T. A. Rana, Y.-N. Cheah, and S. Letchmunan, ‘‘Topic modeling in sen-timent analysis: A systematic review,’’ J. ICT Res. Appl., vol. 10, no. 1,pp. 76–93, Oct. 2016
[26] F. Ali, D. Kwak, P. Khan, S. M. R. Islam, K. H. Kim, and K. S. Kwak,‘‘Fuzzy ontology-based sentiment analysis of transportation and cityfeature reviews for safe traveling,’’ Transp. Res. C, Emerg. Technol.,vol. 77, pp. 33–48, Apr. 2017.
[27] F. Ali, D. Kwak, P. Khan, S. El-Sappagh, A. Ali, S. Ullah, K. H. Kim,and K.-S. Kwak, ‘‘Transportation sentiment analysis using word embed-ding and ontology-based topic modeling,’’ Knowl.-Based Syst., vol. 174,pp. 27–42, Jun. 2019.
[28] F. Ali, E. K. Kim, and Y.-G. Kim, ‘‘Type-2 fuzzy ontology-based opinionmining and information extraction: A proposal to automate the hotelreservation system,’’ Int. J. Speech Technol., vol. 42, no. 3, pp. 481–500,Apr. 2015.
[29] M. Tubishat, N. Idris, and M. A. M. Abushariah, ‘‘Implicit aspect extrac-tion in sentiment analysis: Review, taxonomy, oppportunities, and openchallenges,’’ Inf. Process. Manage., vol. 54, no. 4, pp. 545–563, Jul. 2018.
[30] J. Z. Maitama, N. Idris, and A. Zakari, ‘‘Asystematic mapping study of theempirical explicit aspect extractions in sentiment analysis,’’ IEEE Access,vol. 8, pp. 113878–113899, 2020.
[31] E. H. Hajar and B. Mohammed, ‘‘Hybrid approach to extract adjectivesfor implicit aspect identification in opinion mining,’’ in Proc. 11th Int.Conf. Intell. Syst. Theories Appl. (SITA), Oct. 2016, pp. 1–5.
[32] Z. Stapić, E. G. López, A. G. Cabot, L. de Marcos Ortega, andV. Strahonja, ‘‘Performing systematic literature review in software engi-neering,’’ in Proc. 23rd Int. Conf. (CECIIS), Jan. 2012, pp. 441–447.
[33] N. H. Bakar, Z. M. Kasirun, and N. Salleh, ‘‘Feature extractionapproaches from natural language requirements for reuse in softwareproduct lines: A systematic literature review,’’ J. Syst. Softw., vol. 106,pp. 132–149, Aug. 2015.
[34] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,‘‘Lessons from applying the systematic literature review process withinthe software engineering domain,’’ J. Syst. Softw., vol. 80, no. 4,pp. 571–583, Apr. 2007.
[35] L. García-Moya, H. Anaya-Sánchez, and R. Berlanga-Llavori, ‘‘Combin-ing probabilistic language models for aspect-based sentiment retrieval,’’in Proc. Eur. Conf. Inf. Retr., 2012, pp. 561–564.
[36] R. Klinger and P. Cimiano, ‘‘Joint and pipeline probabilistic models forfine-grained sentiment analysis: Extracting aspects, subjective phrasesand their relations,’’ in Proc. IEEE 13th Int. Conf. Data Mining Workshops(ICDMW), Dec. 2013, pp. 937–944.
[37] S. Khalid, M. H. Aslam, and M. T. Khan, ‘‘Opinion reason mining:Implicit aspects beyond implying aspects,’’ in Proc. 21st Saudi Comput.Soc. Nat. Comput. Conf. (NCC), Apr. 2018, pp. 1–5.
[38] R. K. Amplayo, S. Lee, and M. Song, ‘‘Incorporating product descriptionto sentiment topic models for improved aspect-based sentiment analysis,’’Inf. Sci., vols. 454–455, pp. 200–215, Jul. 2018.
[39] S. Poria, N. Ofek, A. Gelbukh, A. Hussain, and L. Rokach, ‘‘Dependencytree-based rules for concept-level aspect-based sentiment analysis,’’ inSemantic WebEvaluation Challenge. Cham, Switzerland: Springer, 2014,pp. 41–47.
[40] N. Zainuddin, A. Selamat, and R. Ibrahim, ‘‘Hybrid sentiment classifi-cation on Twitter aspect-based sentiment analysis,’’ Appl. Intell., vol. 28,pp. 1218–1232, Dec. 2017.
[41] Y. Ding, C. Yu, and J. Jiang, ‘‘A neural network model for semi-supervisedreview aspect identification,’’ in Proc. Pacific–Asia Conf. Knowl. Discov-ery Data Mining, 2017, pp. 668–680.
[42] R. He, W. S. Lee, H. T. Ng, and D. Dahlmeier, ‘‘An unsupervised neuralattention model for aspect extraction,’’ in Proc. 55th Annu. MeetingAssoc. Comput. Linguistics, vol. 1, 2017, pp. 388–397.
[43] K. Schouten, N. De Boer, T. Lam, M. Van Leeuwen, R. Van Luijk, andF. Frasincar, ‘‘Semantics-driven implicit aspect detection in consumerreviews,’’ in Proc. 24th Int. Conf. World Wide Web, 2015, pp. 109–110.
[44] B. Kama, M. Ozturk, P. Karagoz, I. H. Toroslu, and M. Kalender,‘‘Analyzing implicit aspects and aspect dependent sentiment polarity foraspect-based sentiment analysis on informal Turkish texts,’’ in Proc. 9thInt. Conf. Manage. Digit. EcoSyst., 2017, pp. 134–141.
[45] M. Tubishat and N. Idris, ‘‘Explicit and implicit aspect extraction usingwhale optimization algorithm and hybrid approach,’’ in Proc. Int. Conf.Ind. Enterprise Syst. Eng. (ICoIESE). Paris, France Atlantis Press, 2019,pp. 208–213.
[46] Z. Nasim and S. Haider, ‘‘ABSA toolkit: An open source tool for aspectbased sentiment analysis,’’ Int. J. Artif. Intell. Tools, vol. 26, no. 6,pp. 1–31, 2017.
[47] A.-S. Mohammad, M. Al-Ayyoub, H. N. Al-Sarhan, and Y. Jararweh, ‘‘Anaspect-based sentiment analysis approach to evaluating arabic news affecton readers,’’ J. Universal Comput. Sci., vol. 22, no. 5, pp. 630–649, 2016
[48] C. Gupta, A. Jain, and N. Joshi, ‘‘A novel approach to feature hierarchy inaspect based sentiment analysis using OWA operator,’’ in Proc. 2nd Int.Conf. Commun., Comput. Netw., 2019, pp. 661–667.
[49] M. Ahmed, Q. Chen, Y. Wang, and Z. Li, ‘‘Hint-embeddingattention-based LSTM for aspect identification sentiment analysis,’’ inProc. Pacific Rim Int. Conf. Artif. Intell., 2019, pp. 569–581.
[50] D.-H. Pham and A.-C. Le, ‘‘Learning multiple layers of knowledgerepresentation for aspect based sentiment analysis,’’ Data Knowl. Eng.,vol. 114, pp. 26–39, Mar. 2018.
[51] R. M. Marcacini, R. G. Rossi, I. P. Matsuno, and S. O. Rezende, ‘‘Cross-domain aspect extraction for sentiment analysis: A transductive learningapproach,’’ Decis. Support Syst., vol. 114, pp. 70–80, Oct. 2018.
[52] L. Xu, J. Liu, L. Wang, and C. Yin, ‘‘Aspect based sentiment analysisfor online reviews,’’ in Advances in Computer Science and UbiquitousComputing. Singapore: Springer, 2017, pp. 475–480.
[53] S. Gojali and M. L. Khodra, ‘‘Aspect based sentiment analysis for reviewrating prediction,’’ in Proc. Int. Conf. Adv. Inform. Concepts, Theory Appl.(ICAICTA), 2016, pp. 1–6.
[54] M. S. Akhtar, A. Ekbal, and P. Bhattacharyya, ‘‘Aspect based sentimentanalysis in Hindi: Resource creation and evaluation,’’ in Proc. 10th Int.Conf. Lang. Resour. Eval. (LREC), 2016, pp. 2703–2709.
[55] O. De Clercq, E. Lefever, G. Jacobs, T. Carpels, and V. Hoste, ‘‘Towardsan integrated pipeline for aspect-based sentiment analysis in variousdomains,’’ in Proc. 8th Workshop Comput. Approaches Subjectivity Sen-timent Social Media Anal., 2017, pp. 136–142.
[56] B. G. Patra, N. Mukherjee, A. Das, S. Mandal, D. Das, and S. Bandyopad-hyay, ‘‘Identifying aspects and analyzing their sentiments from reviews,’’in Proc. 13th Mex. Int. Conf. Artif. Intell., Nov. 2014, pp. 9–15.
[57] B. G. Patra, S. Mandal, D. Das, and S. Bandyopadhyay, ‘‘JU_CSE: Aconditional random field (CRF) based approach to aspect based sentimentanalysis,’’ in Proc. 8th Int. Workshop Semantic Eval. (SemEval ), 2014,pp. 370–374.
[58] H. Hamdan, P. Bellot, and F. Béchet, ‘‘Supervised methods foraspect-based sentiment analysis,’’ in Proc. 8th Int. Workshop SemanticEval. (SemEval), 2014, pp. 596–600.
[59] N. Jakob and I. Gurevych, ‘‘Extracting opinion targets in a single-andcross-domain setting with conditional random fields,’’ in Proc. Conf.Empirical Methods Natural Lang. Process., 2010, pp. 1035–1045.
[60] X. Zhou, X. Wan, and J. Xiao, ‘‘Cross-language opinion target extractionin review texts,’’ in Proc. IEEE 12th Int. Conf. Data Mining, Dec. 2012,pp. 1200–1205.
[61] J. Barnes, P. Lambert, and T. Badia, ‘‘Exploring distributional represen-tations and machine translation for aspect-based cross-lingual sentimentclassification,’’ in Proc. COLING 26th Int. Conf. Comput. LinguisticsTech. Papers, 2016, pp. 1613–1623.
[62] M. AL-Smadi, O. Qwasmeh, B. Talafha, M. Al-Ayyoub, Y. Jararweh,and E. Benkhelifa, ‘‘An enhanced framework for aspect-based sentimentanalysis of hotels’ reviews: Arabic reviews case study,’’ in Proc. 11thInt. Conf. for Internet Technol. Secured Trans. (ICITST), Dec. 2016,pp. 98–103.
[63] R. Hegde and S. Seema, ‘‘Aspect based feature extraction and sentimentclassification of review data sets using incremental machine learningalgorithm,’’ in Proc. 3rd Int. Conf. Adv. Electr., Electron., Inf., Commun.Bio-Inform. (AEEICB), Feb. 2017, pp. 122–125.
[64] A. S. Manek, P. D. Shenoy, M. C. Mohan, and K. Venugopal, ‘‘Aspectterm extraction for sentiment analysis in large movie reviews using Giniindex feature selection method and SVM classifier,’’ World Wide Web,vol. 20, no. 2, pp. 135–154, 2017.
[65] B.-D. Nguyen-Hoang, Q.-V. Ha, and M.-Q. Nghiem, ‘‘Aspect-based sen-timent analysis using word embedding restricted Boltzmann machines,’’in Proc. Int. Conf. Comput. Social Netw., 2016, pp. 285–297.
[66] S. Ruder, P. Ghaffari, and J. G. Breslin, ‘‘A hierarchical model of reviewsfor aspect-based sentiment analysis,’’ 2016, arXiv:1609.02745. [Online].Available: http://arxiv.org/abs/1609.02745
[67] N. Shelke, S. Deshpande, and V. Thakare, ‘‘Domain independentapproach for aspect oriented sentiment analysis for product reviews,’’in Proc. 5th Int. Conf. Frontiers Intell. Comput. Theory Appl., 2017,pp. 651–659.
[68] L. Zhang, W. Xu, and S. Li, ‘‘Aspect identification and sentiment analysisbased on NLP,’’ in Proc. 3rd IEEE Int. Conf. Netw. Infrastruct. Digit.Content (IC-NIDC), Sep. 2012, pp. 660–664.[69] R. K. Amplayo and S.-W. Hwang, ‘‘Aspect sentiment model formicro reviews,’’ in Proc. IEEE Int. Conf. Data Mining (ICDM), 2017,pp. 727–732.
[70] I. P. Matsuno, R. G. Rossi, R. M. Marcacini, and S. O. Rezende, ‘‘Aspect-based sentiment analysis using semi-supervised learning in bipartite het-erogeneous networks,’’ J. Inf. Data Manage., vol. 7, no. 2, p. 141, 2016.
[71] H. Ye, Z. Yan, Z. Luo, and W. Chao, ‘‘Dependency-tree based convolu-tional neural networks for aspect term extraction,’’ in Proc. Pacific–AsiaConf. Knowl. Discovery Data Mining, 2017, pp. 350–362.
[72] W. Maharani, D. H. Widyantoro, and M. L. Khodra, ‘‘SAE:Syntactic-based aspect and opinion extraction from product reviews,’’in Proc. 2nd Int. Conf. Adv. Inform. Concepts, Theory Appl. (ICAICTA),Aug. 2015, pp. 1–6.
[73] X. Zheng, Z. Lin, X. Wang, K.-J. Lin, and M. Song, ‘‘Incorporatingappraisal expression patterns into topic modeling for aspect and sentimentword identification,’’ Knowl.-Based Syst., vol. 61, pp. 29–47, May 2014.
[74] T. Hercig, T. Brychcín, L. Svoboda, M. Konkol, and J. Steinberger,‘‘Unsupervised methods to improve aspect-based sentiment analysis inczech,’’ Computación y Sistemas, vol. 20, no. 3, pp. 365–375, Sep. 2016.
[75] I. Titov and R. McDonald, ‘‘A joint model of text and aspect ratings forsentiment summarization,’’ in Proc. ACL-HLT, 2008, pp. 308–316.
[76] R. Piryani, V. Gupta, V. K. Singh, and U. Ghose, ‘‘A linguistic rule-based approach for aspect-level sentiment analysis of movie reviews,’’ inAdvances in Computer and Computational Sciences. Singapore: Springer,2017, pp. 201–209.
[77] T. A. Rana and Y.-N. Cheah, ‘‘A two-fold rule-based model for aspectextraction,’’ Expert Syst. Appl., vol. 89, pp. 273–285, Dec. 2017.
[78] Y. Kang and L. Zhou, ‘‘RubE: Rule-based methods for extracting productfeatures from online consumer reviews,’’ Inf. Manage., vol. 54, no. 2,pp. 166–176, Mar. 2017.
[79] C. Wu, F. Wu, S. Wu, Z. Yuan, and Y. Huang, ‘‘A hybrid unsupervisedmethod for aspect term and opinion target extraction,’’ Knowl.-BasedSyst., vol. 148, pp. 66–73, May 2018.
[80] A. Firmanto and R. Sarno, ‘‘Aspect-based sentiment analysis using gram-matical rules, word similarity and SentiCircle,’’ Int. J. Intell. Eng. Syst.,vol. 12, no. 5, pp. 190–201, Oct. 2019.
[81] Q. Liu, Z. Gao, B. Liu, and Y. Zhang, ‘‘Automated rule selection for opin-ion target extraction,’’ Knowl.-Based Syst., vol. 104, pp. 74–88, Jul. 2016.
[82] S. M. Jiménez-Zafra, M. T. Martín-Valdivia, E. Martínez-Cámara, andL. A. Ureña-López, ‘‘Combining resources to improve unsupervisedsentiment analysis at aspect-level,’’J. Inf. Sci., vol. 42, no. 2, pp. 213–229,Apr. 2016.
[83] T. A. Rana and Y.-N. Cheah, ‘‘Exploiting sequential patterns to detectobjective aspects from online reviews,’’ in Proc. Int. Conf. Adv. Inform.Concepts, Theory And Appl. (ICAICTA), 2016, pp. 1–5.
[84] T. A. Rana and Y.-N. Cheah, ‘‘Improving aspect extraction using aspectfrequency and semantic similarity-based approach for aspect-based sen-timent analysis,’’ in Proc. Int. Conf. Comput. Inf. Technol., 2017,pp. 317–326.
[85] W. Maharani, D. H. Widyantoro, and M. L. Khodra, ‘‘Aspect extractionin customer reviews using syntactic pattern,’’ Procedia Comput. Sci.,vol. 59, pp. 244–253, Jan. 2015.
[86] T. A. Rana and Y.-N. Cheah, ‘‘Sequential patterns rule-based approachfor opinion target extraction from customer reviews,’’ J. Inf. Sci., vol. 45,no. 5, pp. 643–655, Oct. 2019.
[87] D. H. Sasmita, A. F. Wicaksono, S. Louvan, and M. Adriani, ‘‘Unsuper-vised aspect-based sentiment analysis on indonesian restaurant reviews,’’in Proc. Int. Conf. Asian Lang. Process. (IALP), Dec. 2017, pp. 383–386.
[88] T. Thura Thet, J.-C. Na, and C. S. G. Khoo, ‘‘Aspect-based sentimentanalysis of movie reviews on discussion boards,’’ J. Inf. Sci., vol. 36, no. 6,pp. 823–848, Dec. 2010.
[89] S. Li, L. Zhou, and Y. Li, ‘‘Improving aspect extraction by augmentinga frequency-based method with Web-based similarity measures,’’ Inf.Process. Manage., vol. 51, no. 1, pp. 58–67, Jan. 2015.
[90] A. Bagheri, M. Saraee, and F. de Jong, ‘‘An unsupervised aspect detectionmodel for sentiment analysis of reviews,’’ in Proc. Int. Conf. Appl. NaturalLang. Inf. Syst., 2013, pp. 140–151.
[91] F. Xianghua, L. Guo, G. Yanyan, and W. Zhiqiang, ‘‘Multi-aspect sen-timent analysis for Chinese online social reviews based on topic mod-eling and HowNet lexicon,’’ Knowl.-Based Syst., vol. 37, pp. 186–195,Jan. 2013.
[92] L. Balachandran and A. Kirupananda, ‘‘Online reviews evaluation systemfor higher education institution: An aspect based sentiment analysis tool,’’in Proc. 11th Int. Conf. Softw., Knowl., Inf. Manage. Appl. (SKIMA),Dec. 2017, pp. 1–7
[93] M. Dragoni, M. Federici, and A. Rexha, ‘‘An unsupervised aspect extrac-tion strategy for monitoring real-time reviews stream,’’ Inf. Process.Manage., vol. 56, no. 3, pp. 1103–1118, May 2019.
[94] M. Al-Smadi, O. Qawasmeh, B. Talafha, and M. Quwaider, ‘‘Humanannotated Arabic dataset of book reviews for aspect based sentimentanalysis,’’ in Proc. 3rd Int. Conf. Future Internet Things Cloud (FiCloud),Aug. 2015, pp. 726–730.
[95] M. Federici and M. Dragoni, ‘‘A branching strategy for unsupervisedaspect-based sentiment analysis,’’ in Proc. 3rd Int. Workshop Emotions,Modality, Sentiment Anal. Semantic Web (ESWC), 2017.
[96] S. Ahmed, S. Hina, E. Atwell, and F. Ahmed, ‘‘Aspect based sentimentanalysis framework using data from social media network,’’ Int. J. Com-put. Sci. Netw. Secur., vol. 17, pp. 100–105, Jul. 2017.
[97] J. Liao, S. Wang, D. Li, and X. Li, ‘‘FREERL: Fusion relation embeddedrepresentation learning framework for aspect extraction,’’ Knowl.-BasedSyst., vol. 135, pp. 9–17, Nov. 2017.
[98] A. Mukherjee and B. Liu, ‘‘Aspect extraction through semi-supervisedmodeling,’’ in Proc. 50th Annu. Meeting Assoc. Comput. Linguistics,vol. 1, 2012, pp. 339–348.
[99] T. Wang, Y. Cai, H.-F. Leung, R. Y. K. Lau, Q. Li, and H. Min, ‘‘Productaspect extraction supervised with online domain knowledge,’’ Knowl.-Based Syst., vol. 71, pp. 86–100, Nov. 2014.
[100] K. Liu, L. Xu, and J. Zhao, ‘‘Opinion target extraction using word-basedtranslation model,’’ in Proc. Joint Conf. Empirical Methods Natural Lang.Process. Comput. Natural Lang. Learn., 2012, pp. 1346–1356.
[101] S. Poria, E. Cambria, and A. Gelbukh, ‘‘Aspect extraction for opinionmining with a deep convolutional neural network,’’ Knowl.-Based Syst.,vol. 108, pp. 42–49, Sep. 2016.
[102] N. Jihan, Y. Senarath, and S. Ranathunga, ‘‘Aspect extraction from cus-tomer reviews using convolutional neural networks,’’ in Proc. 18th Int.Conf. Adv. ICT for Emerg. Regions (ICTer), Sep. 2018, pp. 215–220.
[103] M. Al-Smadi, B. Talafha, M. Al-Ayyoub, and Y. Jararweh, ‘‘Using longshort-term memory deep neural networks for aspect-based sentimentanalysis of arabic reviews,’’ Int. J. Mach. Learn. Cybern., vol. 10, no. 8,pp. 2163–2175, Aug. 2019.
[104] J. Feng, S. Cai, and X. Ma, ‘‘Enhanced sentiment labeling and implicitaspect identification by integration of deep convolution neural net-work and sequential algorithm,’’ Cluster Comput., vol. 22, no. 3,pp. 5839–5857, 2019.
[105] A. Marstawi, N. M. Sharef, T. N. M. Aris, and A. Mustapha, ‘‘Ontology-based aspect extraction for an improved sentiment analysis in summa-rization of product reviews,’’ in Proc. 8th Int. Conf. Comput. ModelingSimulation, 2017, pp. 100–104.
[106] I. Cruz, A. F. Gelbukh, and G. Sidorov, ‘‘Implicit aspect indicator extrac-tion for aspect based opinion mining,’’ Int. J. Comput. Linguistics Appl.,vol. 5, no. 2, pp. 135–152, 2014.
[107] H. E. Hannach and M. Benkhalifa, ‘‘WordNet based implicit aspectsentiment analysis for crime identification from Twitter,’’ Int. J. Adv.Comput. Sci. Appl., vol. 9, no. 12, pp. 150–159, 2018.
[108] Q. Xu, L. Zhu, T. Dai, L. Guo, and S. Cao, ‘‘Non-negative matrix factor-ization for implicit aspect identification,’’ J. Ambient Intell. HumanizedComput.. vol. 29, pp. 1–7, May 2019.
[109] E. H. Hajar and B. Mohammed, ‘‘Using synonym and definition WordNetsemantic relations for implicit aspect identification in sentiment analy-sis,’’ in Proc. 2nd Int. Conf. Netw., Inf. Syst. Secur., 2019, pp. 1–5.
[110] L. Augustyniak, T. Kajdanowicz, and P. Kazienko, ‘‘Aspect detectionusing word and char embeddings with (Bi) LSTM and CRF,’’ in Proc.IEEE 2nd Int. Conf. Artif. Intell. Knowl. Eng. (AIKE), Jun. 2019,pp. 43–50.
[111] P. Ray and A. Chakrabarti, ‘‘A mixed approach of deep learning methodand rule-based method to improve aspect level sentiment analysis,’’ Appl.Comput. Inform., Aug. 2020, doi: 10.1016/j.aci.2019.02.002.
[112] O. Alqaryouti, N. Siyam, A. A. Monem, and K. Shaalan, ‘‘Aspect-basedsentiment analysis using smart government review data,’’ Appl. Comput.Inform., Nov. 2019, doi: 10.1016/j.aci.2019.11.003.
[113] S. Chatterji, N. Varshney, and R. K. Rahul, ‘‘AspectFrameNet: AframeNet extension for analysis of sentiments around product aspects,’’J. Supercomput., vol. 73, no. 3, pp. 961–972, Mar. 2017.
[114] J. Barnes, P. Lambert, and T. Badia, ‘‘MultiBooked: A corpus ofbasque and catalan hotel reviews annotated for aspect-level sen-timent classification,’’ 2018, arXiv:1803.08614. [Online]. Available:http://arxiv.org/abs/1803.08614
[115] J. Cheng, S. Zhao, J. Zhang, I. King, X. Zhang, and H. Wang, ‘‘Aspect-level sentiment classification with HEAT (HiErarchical ATtention) net-work,’’ in Proc. ACM Conf. Inf. Knowl. Manage., Nov. 2017, pp. 97–106
[116] Y. Bao, H. Xu, F. Jia, and X. Bai, ‘‘Aspect-based sentiment analysis usingABPCS model and SVMP perf in Chinese reviews,’’ in Proc. Int. JointConf. Neural Netw. (IJCNN), 2017, pp. 3208–3215.
[117] X. Fu, Y. Guo, W. Guo, and Z. Wang, ‘‘Aspect and sentiment extractionbased on information-theoretic co-clustering,’’ in Proc. Int. Symp. NeuralNetw., 2012, pp. 326–335.
[118] S. Poria, E. Cambria, L.-W. Ku, C. Gui, and A. Gelbukh, ‘‘A rule-basedapproach to aspect extraction from product reviews,’’ in Proc. 2ndWorkshop Natural Lang. Process. for Social Media (SocialNLP), 2014,pp. 28–37.
[119] M. Afzaal, M. Usman, and A. Fong, ‘‘Tourism mobile app withaspect-based sentiment classification framework for tourist reviews,’’IEEE Trans. Consum. Electron., vol. 65, no. 2, pp. 233–242, May 2019.
[120] J. Yu, J. Jiang, and R. Xia, ‘‘Global inference for aspect and opinion termsco-extraction based on multi-task neural networks,’’ IEEE/ACM Trans.Audio, Speech, Language Process.,vol. 27, no. 1, pp. 168–177, Jan. 2019.
[121] B. Bansal and S. Srivastava, ‘‘Hybrid attribute based sentiment classifi-cation of online reviews for consumer intelligence,’’ Appl. Intell., vol. 49,no. 1, pp. 137–149, Jan. 2019.
[122] T. A. Rana and Y.-N. Cheah, ‘‘Hybrid rule-based approach for aspectextraction and categorization from customer reviews,’’ in Proc. 9th Int.Conf. IT Asia (CITA), Aug. 2015, pp. 1–5.
[123] P. Karagoz, B. Kama, M. Ozturk, I. H. Toroslu, and D. Canturk, ‘‘Aframework for aspect based sentiment analysis on turkish informal texts,’’J. Intell. Inf. Syst., vol. 53, no. 3, pp. 431–451, Dec. 2019.
[124] L. Shu, H. Xu, and B. Liu, ‘‘Lifelong learning CRF for super-vised aspect extraction,’’ 2017, arXiv:1705.00251. [Online]. Available:http://arxiv.org/abs/1705.00251
[125] H. Luo, T. Li, B. Liu, B. Wang, and H. Unger, ‘‘Improving aspectterm extraction with bidirectional dependency tree representation,’’IEEE/ACM Trans. Audio, Speech, Language Process., vol. 27, no. 7,pp. 1201–1212, Jul. 2019.
[126] S. Poria, E. Cambria, G. Winterstein, and G.-B. Huang, ‘‘Sentic patterns:Dependency-based rules for concept-level sentiment analysis,’’ Knowl.-Based Syst., vol. 69, pp. 45–63, Oct. 2014.
[127] S. Poria, I. Chaturvedi, E. Cambria, and A. Hussain, ‘‘ConvolutionalMKL based multimodal emotion recognition and sentiment analy-sis,’’ in Proc. IEEE 16th Int. Conf. Data Mining (ICDM), Dec. 2016,pp. 439–448.
[128] S. Poria, E. Cambria, and A. Gelbukh, ‘‘Deep convolutional neural net-work textual features and multiple kernel learning for utterance-level mul-timodal sentiment analysis,’’ in Proc. Conf. Empirical Methods NaturalLang. Process., 2015, pp. 2539–2544.
[129] H. Xu, B. Liu, L. Shu, and P. S. Yu, ‘‘Double embeddings and CNN-basedsequence labeling for aspect extraction,’’ 2018, arXiv:1805.04601.[Online]. Available: http://arxiv.org/abs/1805.04601
[130] Y. Lv, M. Hu, C. Yang, Y. Tang, and H. Wang, ‘‘Extract, attend,predict: Aspect-based sentiment analysis with deep self-attention net-work,’’ in Proc. IEEE 21st Int. Conf. High Perform. Comput. Commun.;IEEE 17th Int. Conf. Smart City; IEEE 5th Int. Conf. Data Sci. Syst.(HPCC/SmartCity/DSS), Aug. 2019, pp. 297–304.
[131] Y. Yiran and S. Srivastava, ‘‘Aspect-based sentiment analysis on mobilephone reviews with LDA,’’ in Proc. 4th Int. Conf. Mach. Learn. Technol.,2019, pp. 101–105.
[132] Z. Luo, S. Huang, and K. Q. Zhu, ‘‘Knowledge empowered prominentaspect extraction from product reviews,’’ Inf. Process. Manage., vol. 56,no. 3, pp. 408–423, May 2019.
[133] N. Burns, Y. Bi, H. Wang, and T. Anderson, ‘‘Enhanced twofold-LDAmodel for aspect discovery and sentiment classification,’’ Int. J. Knowl.-Based Org., vol. 9, no. 4, pp. 1–20, Oct. 2019.
https://ieeexplore.ieee.org/document/9234464