Abstract
Background:
Sentiment analysis (SA) is a subfield of natural language processing whose aim is to automatically classify the sentiment expressed in a free text.
It has found practical applications across a wide range of societal contexts including marketing, economy, and politics.
This review focuses specifically on applications related to health, which is defined as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”
Objective:
This study aimed to establish the state of the art in SA related to health and well-being by conducting a systematic review of the recent literature.
To capture the perspective of those individuals whose health and well-being are affected, we focused specifically on spontaneously generated content and not necessarily that of health care professionals.
Methods:
Our methodology is based on the guidelines for performing systematic reviews.
In January 2019, we used PubMed, a multifaceted interface, to perform a literature search against MEDLINE.
We identified a total of 86 relevant studies and extracted data about the datasets analyzed, discourse topics, data creators, downstream applications, algorithms used, and their evaluation.
Results:
The majority of data were collected from social networking and Web-based retailing platforms.
The primary purpose of online conversations is to exchange information and provide social support online.
These communities tend to form around health conditions with high severity and chronicity rates.
Different treatments and services discussed include medications, vaccination, surgery, orthodontic services, individual physicians, and health care services in general.
We identified 5 roles with respect to health and well-being among the authors of the types of spontaneously generated narratives considered in this review: a sufferer, an addict, a patient, a carer, and a suicide victim.
Out of 86 studies considered, only 4 reported the demographic characteristics.
A wide range of methods were used to perform SA.
Most common choices included support vector machines, naïve Bayesian learning, decision trees, logistic regression, and adaptive boosting.
In contrast with general trends in SA research, only 1 study used deep learning.
The performance lags behind the state of the art achieved in other domains when measured by F-score, which was found to be below 60% on average.
In the context of SA, the domain of health and well-being was found to be resource poor: few domain-specific corpora and lexica are shared publicly for research purposes.
Conclusions:
SA results in the area of health and well-being lag behind those in other domains.
It is yet unclear if this is because of the intrinsic differences between the domains and their respective sublanguages, the size of training datasets, the lack of domain-specific sentiment lexica, or the choice of algorithms.
REFERENCES
1. Wiebe J, Bruce R. Probabilistic classifiers for tracking point of view. Progress in communication sciences 1995:125-142
[FREE Full text]
2. Hatzivassiloglou V, McKeown KR. Predicting the Semantic Orientation of Adjectives. In: Proceedings of the 35th Annual
Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association
for Computational Linguistics. 1997 Presented at: ACL'98/EACL'98; July 7-12, 1997; Madrid, Spain p. 174-181 URL:
https://www.aclweb.org/anthology/P97-1023/ [doi: 10.3115/979617.979640]
3. Wiebe JM, Bruce RF, O'Hara TP. Development and Use of a Gold-standard Data Set for Subjectivity Classifications. In:
Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics.
1999 Presented at: ACL'99; June 20-26, 1999; College Park, Maryland, USA p. 246-253 URL: https://www.aclweb.org/
anthology/P99-1032/ [doi: 10.3115/1034678.1034721]
4. Hu M, Liu B. Mining Opinion Features in Customer Reviews. In: Proceedings of the 19th national conference on Artifical
intelligence. 2004 Presented at: AAAI'04; July 25 - 29, 2004; San Jose, California, USA p. 755-760 URL: https://dl.acm.org/
citation.cfm?id=1597269
5. Hu M, Liu B. Mining and Summarizing Customer Reviews. In: Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. 2004 Presented at: KDD'04; August 22 - 25, 2004; Seattle, Washington,
USA p. 168-177 URL: https://dl.acm.org/citation.cfm?id=1014073 [doi: 10.1145/1014052.1014073]
6. Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market. J Comput Sci 2011;2(1):1-8. [doi:
10.1016/j.jocs.2010.12.007]
7. Efron M. Cultural orientation: Classifying subjective documents by cociation analysis. In: Proceedings of the AAAI Fall
Symposium on Style and Meaning in Language, Art, and Music. 2004 Presented at: AAAI'04; July 25-29, 2004; San Jose,
California p. 41-48.
8. Ramteke J, Shah S, Godhia D, Shaikh A. Election Result Prediction Using Twitter Sentiment Analysis. In: Proceedings of
the 2016 International Conference on Inventive Computation Technologies. 2016 Presented at: ICICT'16; August 26-27,
2016; Coimbatore, India p. 1-5. [doi: 10.1109/inventive.2016.7823280]
9. World Health Organisation. Geneva, Switzerland: World Health Organisation; 2006. Constitution of the World Health
Organisation URL: https://www.who.int/governance/eb/who_constitution_en.pdf [accessed 2019-11-12]
10. Huber M, Knottnerus JA, Green L, van der Horst H, Jadad AR, Kromhout D, et al. How should we define health? Br Med
J 2011 Jul 26;343:d4163. [doi: 10.1136/bmj.d4163] [Medline: 21791490]
11. Berg O. Health and quality of life. Acta Sociologica 1975;18(1):3-22. [doi: 10.1177/000169937501800102]
12. Denecke K, Deng Y. Sentiment analysis in medical settings: new opportunities and challenges. Artif Intell Med 2015
May;64(1):17-27. [doi: 10.1016/j.artmed.2015.03.006] [Medline: 25982909]
13. Gohil S, Vuik S, Darzi A. Sentiment analysis of health care tweets: review of the methods used. JMIR Public Health Surveill
2018 Apr 23;4(2):e43 [FREE Full text] [doi: 10.2196/publichealth.5789] [Medline: 29685871]
14. Kitchenham B. Procedures for performing systematic reviews. Keele University, Keele 2004;33(2004):1-26 [FREE Full
text]
15. Cochrane Library: Cochrane Reviews. URL: https://www.cochranelibrary.com/ [accessed 2019-11-12]
16. National Library of Medicine. MEDLINE: Description of the Database URL: https://www.nlm.nih.gov/bsd/medline.html
[accessed 2019-11-12]
17. Embase. URL: https://www.embase.com [accessed 2019-11-12]
18. EBSCO Health. CINAHL Database URL: https://health.ebsco.com/products/the-cinahl-database [accessed 2019-11-12]
19. Cohen J. A Coefficient of Agreement for Nominal Scales. Educ Psychol Meas 1960;20(1):37-46. [doi:
10.1177/001316446002000104]
20. Yoon S, Bakken S. Methods of knowledge discovery in tweets. NI 2012 (2012) 2012;2012:463 [FREE Full text] [Medline:
24199142]
21. Mishra MV, Bennett M, Vincent A, Lee OT, Lallas CD, Trabulsi EJ, et al. Identifying barriers to patient acceptance of
active surveillance: content analysis of online patient communications. PLoS One 2013;8(9):e68563 [FREE Full text] [doi:
10.1371/journal.pone.0068563] [Medline: 24039699]
22. Ramagopalan S, Wasiak R, Cox AP. Using Twitter to investigate opinions about multiple sclerosis treatments: a descriptive,
exploratory study. F1000Res 2014;3:216 [FREE Full text] [doi: 10.12688/f1000research.5263.1] [Medline: 25520780]
23. Wiley MT, Jin C, Hristidis V, Esterling KM. Pharmaceutical drugs chatter on Online Social Networks. J Biomed Inform
2014 Jun;49:245-254 [FREE Full text] [doi: 10.1016/j.jbi.2014.03.006] [Medline: 24637141]
24. Tighe PJ, Goldsmith RC, Gravenstein M, Bernard HR, Fillingim RB. The painful tweet: text, sentiment, and community
structure analyses of tweets pertaining to pain. J Med Internet Res 2015 Apr 2;17(4):e84 [FREE Full text] [doi:
10.2196/jmir.3769] [Medline: 25843553]
25. Zhou X, Coiera E, Tsafnat G, Arachi D, Ong M, Dunn AG. Using social connection information to improve opinion mining:
identifying negative sentiment about HPV vaccines on Twitter. Stud Health Technol Inform 2015;216:761-765. [doi:
10.3233/978-1-61499-564-7-761] [Medline: 26262154]
26. Daniulaityte R, Chen L, Lamy FR, Carlson RG, Thirunarayan K, Sheth A. 'When 'Bad' is 'Good'': identifying personal
communication and sentiment in drug-related tweets. JMIR Public Health Surveill 2016 Oct 24;2(2):e162 [FREE Full text]
[doi: 10.2196/publichealth.6327] [Medline: 27777215]
27. Korkontzelos I, Nikfarjam A, Shardlow M, Sarker A, Ananiadou S, Gonzalez GH. Analysis of the effect of sentiment
analysis on extracting adverse drug reactions from tweets and forum posts. J Biomed Inform 2016 Aug;62:148-158 [FREE
Full text] [doi: 10.1016/j.jbi.2016.06.007] [Medline: 27363901]
28. Ofoghi B, Mann M, Verspoor K. Towards early discovery of salient health threats: a social media emotion classification
technique. Pac Symp Biocomput 2016;21:504-515 [FREE Full text] [doi: 10.1142/9789814749411_0046] [Medline:
26776213]
29. Palomino M, Taylor T, Göker A, Isaacs J, Warber S. The online dissemination of nature-health concepts: lessons from
sentiment analysis of social media relating to 'Nature-deficit disorder'. Int J Environ Res Public Health 2016 Jan 19;13(1):pii:
E142 [FREE Full text] [doi: 10.3390/ijerph13010142] [Medline: 26797628]
30. Bian J, Zhao Y, Salloum RG, Guo Y, Wang M, Prosperi M, et al. Using social media data to understand the impact of
promotional information on laypeople's discussions: a case study of lynch syndrome. J Med Internet Res 2017 Dec
13;19(12):e414 [FREE Full text] [doi: 10.2196/jmir.9266] [Medline: 29237586]
31. Davis MA, Zheng K, Liu Y, Levy H. Public response to Obamacare on Twitter. J Med Internet Res 2017 May 26;19(5):e167
[FREE Full text] [doi: 10.2196/jmir.6946] [Medline: 28550002]
32. Du J, Xu J, Song H, Liu X, Tao C. Optimization on machine learning based approaches for sentiment analysis on HPV
vaccines related tweets. J Biomed Semantics 2017 Mar 3;8(1):9 [FREE Full text] [doi: 10.1186/s13326-017-0120-6]
[Medline: 28253919]
33. Du J, Xu J, Song H, Tao C. Leveraging machine learning-based approaches to assess human papillomavirus vaccination
sentiment trends with Twitter data. BMC Med Inform Decis Mak 2017 Jul 5;17(Suppl 2):69 [FREE Full text] [doi:
10.1186/s12911-017-0469-6] [Medline: 28699569]
34. Gruebner O, Lowe SR, Sykora M, Shankardass K, Subramanian SV, Galea S. A novel surveillance approach for disaster
mental health. PLoS One 2017;12(7):e0181233 [FREE Full text] [doi: 10.1371/journal.pone.0181233] [Medline: 28723959]
35. Haghighi PD, Kang Y, Buchbinder R, Burstein F, Whittle S. Investigating subjective experience and the influence of
weather among individuals with fibromyalgia: a content analysis of Twitter. JMIR Public Health Surveill 2017 Jan 19;3(1):e4
[FREE Full text] [doi: 10.2196/publichealth.6344] [Medline: 28104577]
36. Kang Y, Wang Y, Zhang D, Zhou L. The public's opinions on a new school meals policy for childhood obesity prevention
in the US: a social media analytics approach. Int J Med Inform 2017 Jul;103:83-88. [doi: 10.1016/j.ijmedinf.2017.04.013]
[Medline: 28551006]
37. Lim S, Tucker CS, Kumara S. An unsupervised machine learning model for discovering latent infectious diseases using
social media data. J Biomed Inform 2017 Feb;66:82-94 [FREE Full text] [doi: 10.1016/j.jbi.2016.12.007] [Medline:
28034788]
38. Metwally O, Blumberg S, Ladabaum U, Sinha SR. Using social media to characterize public sentiment toward medical
interventions commonly used for cancer screening: an observational study. J Med Internet Res 2017 Jun 7;19(6):e200
[FREE Full text] [doi: 10.2196/jmir.7485] [Medline: 28592395]
39. Noll D, Mahon B, Shroff B, Carrico C, Lindauer SJ. Twitter analysis of the orthodontic patient experience with braces vs
Invisalign. Angle Orthod 2017 May;87(3):377-383. [doi: 10.2319/062816-508.1] [Medline: 28059576]
40. Oscar N, Fox PA, Croucher R, Wernick R, Keune J, Hooker K. Machine learning, sentiment analysis, and tweets: an
examination of Alzheimer's disease stigma on Twitter. J Gerontol B Psychol Sci Soc Sci 2017 Sep 1;72(5):742-751. [doi:
10.1093/geronb/gbx014] [Medline: 28329835]
41. Salas-Zárate MD, Medina-Moreira J, Lagos-Ortiz K, Luna-Aveiga H, Rodríguez-García MA, Valencia-García R. Sentiment
analysis on tweets about diabetes: an aspect-level approach. Comput Math Methods Med 2017;2017:5140631 [FREE Full
text] [doi: 10.1155/2017/5140631] [Medline: 28316638]
42. Cao X, MacNaughton P, Deng Z, Yin J, Zhang X, Allen JG. Using Twitter to better understand the spatiotemporal patterns
of public sentiment: a case study in Massachusetts, USA. Int J Environ Res Public Health 2018 Feb 2;15(2):pii: E250
[FREE Full text] [doi: 10.3390/ijerph15020250] [Medline: 29393869]
43. Gabarron E, Dorronzoro E, Rivera-Romero O, Wynn R. Diabetes on Twitter: a sentiment analysis. J Diabetes Sci Technol
2019 May;13(3):439-444. [doi: 10.1177/1932296818811679] [Medline: 30453762]
44. Pai RR, Alathur S. Assessing mobile health applications with Twitter analytics. Int J Med Inform 2018 May;113:72-84.
[doi: 10.1016/j.ijmedinf.2018.02.016] [Medline: 29602436]
45. Zhang L, Hall M, Bastola D. Utilizing Twitter data for analysis of chemotherapy. Int J Med Inform 2018 Dec;120:92-100.
[doi: 10.1016/j.ijmedinf.2018.10.002] [Medline: 30409350]
46. Roccetti M, Marfia G, Salomoni P, Prandi C, Zagari RM, Kengni FL, et al. Attitudes of Crohn's disease patients:
infodemiology case study and sentiment analysis of Facebook and Twitter posts. JMIR Public Health Surveill 2017 Aug
9;3(3):e51 [FREE Full text] [doi: 10.2196/publichealth.7004] [Medline: 28793981]
47. Islam MR, Kabir MA, Ahmed A, Kamal AR, Wang H, Ulhaq A. Depression detection from social network data using
machine learning techniques. Health Inf Sci Syst 2018 Dec;6(1):8. [doi: 10.1007/s13755-018-0046-0] [Medline: 30186594]
48. Ricard BJ, Marsch LA, Crosier B, Hassanpour S. Exploring the utility of community-generated social media content for
detecting depression: an analytical study on Instagram. J Med Internet Res 2018 Dec 6;20(12):e11817 [FREE Full text]
[doi: 10.2196/11817] [Medline: 30522991]
49. Oksanen A, Garcia D, Sirola A, Näsi M, Kaakinen M, Keipi T, et al. Pro-anorexia and anti-pro-anorexia videos on YouTube:
sentiment analysis of user responses. J Med Internet Res 2015 Nov 12;17(11):e256 [FREE Full text] [doi: 10.2196/jmir.5007]
[Medline: 26563678]
50. Livas C, Delli K, Pandis N. 'My Invisalign experience': content, metrics and comment sentiment analysis of the most popular patient testimonials on YouTube. Prog Orthod 2018 Jan 22;19(1):3 [FREE Full text] [doi: 10.1186/s40510-017-0201-1]
[Medline: 29354889]
51. Alada AE, Muderrisoglu S, Akbas NB, Zahmacioglu O, Bingol HO. Detecting suicidal ideation on forums: proof-of-concept
study. J Med Internet Res 2018 Jun 21;20(6):e215 [FREE Full text] [doi: 10.2196/jmir.9840] [Medline: 29929945]
52. Adams DZ, Gruss R, Abrahams AS. Automated discovery of safety and efficacy concerns for joint & muscle pain relief
treatments from online reviews. Int J Med Inform 2017 Apr;100:108-120. [doi: 10.1016/j.ijmedinf.2017.01.005] [Medline:
28241932]
53. Carrillo-de-Albornoz J, Vidal JR, Plaza L. Feature engineering for sentiment analysis in e-health forums. PLoS One
2018;13(11):e0207996 [FREE Full text] [doi: 10.1371/journal.pone.0207996] [Medline: 30496232]
54. Carrillo-de-Albornoz J, Aker A, Kurtic E, Plaza L. Beyond opinion classification: extracting facts, opinions and experiences
from health forums. PLoS One 2019;14(1):e0209961 [FREE Full text] [doi: 10.1371/journal.pone.0209961] [Medline:
30625206]
55. RateMDs. URL: https://www.ratemds.com/ [accessed 2019-11-12]
56. Alemi F, Torii M, Clementz L, Aron DC. Feasibility of real-time satisfaction surveys through automated analysis of patients' unstructured comments and sentiments. Qual Manag Health Care 2012;21(1):9-19. [doi: 10.1097/QMH.0b013e3182417fc4]
[Medline: 22207014]
57. Wallace BC, Paul MJ, Sarkar U, Trikalinos TA, Dredze M. A large-scale quantitative analysis of latent factors and sentiment in online doctor reviews. J Am Med Inform Assoc 2014;21(6):1098-1103 [FREE Full text] [doi:
10.1136/amiajnl-2014-002711] [Medline: 24918109]
58. Hopper AM, Uriyo M. Using sentiment analysis to review patient satisfaction data located on the internet. J Health Organ
Manag 2015;29(2):221-233. [doi: 10.1108/JHOM-12-2011-0129] [Medline: 25800334]
59. WebMD - Better information. Better health. URL: https://www.webmd.com/ [accessed 2019-11-12]
60. Huh J, Yetisgen-Yildiz M, Pratt W. Text classification for assisting moderators in online health communities. J Biomed
Inform 2013 Dec;46(6):998-1005 [FREE Full text] [doi: 10.1016/j.jbi.2013.08.011] [Medline: 24025513]
61. Noferesti S, Shamsfard M. Resource construction and evaluation for indirect opinion mining of drug reviews. PLoS One
2015;10(5):e0124993 [FREE Full text] [doi: 10.1371/journal.pone.0124993] [Medline: 25962135]
62. Ask a Patient. URL: https://www.askapatient.com/ [accessed 2019-11-12]
63. Noferesti S, Shamsfard M. Using Linked Data for polarity classification of patients' experiences. J Biomed Inform 2015
Oct;57:6-19 [FREE Full text] [doi: 10.1016/j.jbi.2015.06.017] [Medline: 26210363]
64. DrugLib. URL: http://www.druglib.com/ [accessed 2019-11-12]
65. Asghar MZ, Ahmad S, Qasim M, Zahra SR, Kundi FM. SentiHealth: creating health-related sentiment lexicon using hybrid
approach. Springerplus 2016;5(1):1139 [FREE Full text] [doi: 10.1186/s40064-016-2809-x] [Medline: 27504237]
66. Breast Cancer Information and Support. URL: https://www.breastcancer.org/ [accessed 2019-11-12]
67. Zhang S, Bantum E, Owen J, Elhadad N. Does sustained participation in an online health community affect sentiment?
AMIA Annu Symp Proc 2014;2014:1970-1979 [FREE Full text] [Medline: 25954470]
68. Cabling ML, Turner JW, Hurtado-de-Mendoza A, Zhang Y, Jiang X, Drago F, et al. Sentiment analysis of an online breast
cancer support group: communicating about tamoxifen. Health Commun 2018 Sep;33(9):1158-1165 [FREE Full text] [doi:
10.1080/10410236.2017.1339370] [Medline: 28678549]
69. MedHelp. URL: https://medhelp.org/ [accessed 2019-11-12]
70. Yang FC, Lee AJ, Kuo SC. Mining health social media with sentiment analysis. J Med Syst 2016 Nov;40(11):236. [doi:
10.1007/s10916-016-0604-4] [Medline: 27663246]
71. Lu Y, Wu Y, Liu J, Li J, Zhang P. Understanding health care social media use from different stakeholder perspectives: a
content analysis of an online health community. J Med Internet Res 2017 Apr 7;19(4):e109 [FREE Full text] [doi:
10.2196/jmir.7087] [Medline: 28389418]
72. DailyStrength. URL: https://www.dailystrength.org/
73. Cancer Survivor Network. URL: http://csn.cancer.org/ [accessed 2019-11-12]
74. Portier K, Greer GE, Rokach L, Ofek N, Wang Y, Biyani P, et al. Understanding topics and sentiment in an online cancer
survivor community. J Natl Cancer Inst Monogr 2013 Dec;2013(47):195-198. [doi: 10.1093/jncimonographs/lgt025]
[Medline: 24395991]
75. Zhao K, Yen J, Greer G, Qiu B, Mitra P, Portier K. Finding influential users of online health communities: a new metric
based on sentiment influence. J Am Med Inform Assoc 2014 Oct;21(e2):e212-e218 [FREE Full text] [doi:
10.1136/amiajnl-2013-002282] [Medline: 24449805]
76. Bui N, Yen J, Honavar V. Temporal causality analysis of sentiment change in a cancer survivor network. IEEE Trans
Comput Soc Syst 2016 Jun;3(2):75-87 [FREE Full text] [doi: 10.1109/TCSS.2016.2591880] [Medline: 29399599]
77. National Health Service. URL: https://www.nhs.uk/ [accessed 2019-11-12]
78. Greaves F, Ramirez-Cano D, Millett C, Darzi A, Donaldson L. Use of sentiment analysis for capturing patient experience
from free-text comments posted online. J Med Internet Res 2013 Nov 1;15(11):e239 [FREE Full text] [doi: 10.2196/jmir.2721]
[Medline: 24184993]
79. DiabetesDaily. URL: https://www.diabetesdaily.com [accessed 2019-11-12]
80. Akay A, Dragomir A, Erlandsson B. A novel data-mining approach leveraging social media to monitor consumer opinion
of sitagliptin. IEEE J Biomed Health Inform 2015 Jan;19(1):389-396. [doi: 10.1109/JBHI.2013.2295834] [Medline:
25561458]
81. Pestian JP, Matykiewicz P, Linn-Gust M, South B, Uzuner O, Wiebe J, et al. Sentiment analysis of suicide notes: a shared
task. Biomed Inform Insights 2012 Jan 30;5(Suppl 1):3-16 [FREE Full text] [doi: 10.4137/bii.s9042] [Medline: 22419877]
82. Cherry C, Mohammad SM, de Bruijn B. Binary classifiers and latent sequence models for emotion detection in suicide
notes. Biomed Inform Insights 2012;5(Suppl. 1):147-154 [FREE Full text] [doi: 10.4137/BII.S8933] [Medline: 22879771]
83. Desmet B, Hoste V. Combining lexico-semantic features for emotion classification in suicide notes. Biomed Inform Insights
2012;5(Suppl 1):125-128 [FREE Full text] [doi: 10.4137/BII.S8960] [Medline: 22879768]
84. Dzogang F, Lesot M, Rifqi M, Bouchon-Meunier B. Early fusion of low level features for emotion mining. Biomed Inform
Insights 2012;5(Suppl 1):129-136 [FREE Full text] [doi: 10.4137/BII.S8973] [Medline: 22879769]
85. Liakata M, Kim J, Saha S, Hastings J, Rebholz-Schuhmann D. Three hybrid classifiers for the detection of emotions in
suicide notes. Biomed Inform Insights 2012;5(Suppl 1):175-184 [FREE Full text] [doi: 10.4137/BII.S8967] [Medline:
22879774]
86. Luyckx K, Vaassen F, Peersman C, Daelemans W. Fine-grained emotion detection in suicide notes: a thresholding approach
to multi-label classification. Biomed Inform Insights 2012;5(Suppl 1):61-69 [FREE Full text] [doi: 10.4137/BII.S8966]
[Medline: 22879761]
87. McCart JA, Finch DK, Jarman J, Hickling E, Lind JD, Richardson MR, et al. Using ensemble models to classify the
sentiment expressed in suicide notes. Biomed Inform Insights 2012;5(Suppl 1):77-85 [FREE Full text] [doi:
10.4137/BII.S8931] [Medline: 22879763]
88. Nikfarjam A, Emadzadeh E, Gonzalez G. A hybrid system for emotion extraction from suicide notes. Biomed Inform
Insights 2012;5(Suppl 1):165-174 [FREE Full text] [doi: 10.4137/BII.S8981] [Medline: 22879773]
89. Pak A, Bernhard D, Paroubek P, Grouin C. A combined approach to emotion detection in suicide notes. Biomed Inform
Insights 2012;5(Suppl 1):105-114 [FREE Full text] [doi: 10.4137/BII.S8969] [Medline: 22879766]
90. Pedersen T. Rule-based and lightly supervised methods to predict emotions in suicide notes. Biomed Inform Insights
2012;5(Suppl 1):185-193 [FREE Full text] [doi: 10.4137/BII.S8953] [Medline: 22879775]
91. Read J, Velldal E, Ovrelid L. Labeling emotions in suicide notes: cost-sensitive learning with heterogeneous features.
Biomed Inform Insights 2012;5(Suppl 1):99-103 [FREE Full text] [doi: 10.4137/BII.S8930] [Medline: 22879765]
92. Roberts K, Harabagiu SM. Statistical and similarity methods for classifying emotion in suicide notes. Biomed Inform
Insights 2012;5(Suppl 1):195-204 [FREE Full text] [doi: 10.4137/BII.S8958] [Medline: 22879776]
93. Sohn S, Torii M, Li D, Wagholikar K, Wu S, Liu H. A hybrid approach to sentiment sentence classification in suicide notes.
Biomed Inform Insights 2012;5(Suppl 1):43-50 [FREE Full text] [doi: 10.4137/BII.S8961] [Medline: 22879759]
94. Spasi I, Burnap P, Greenwood M, Arribas-Ayllon M. A naïve Bayes approach to classifying topics in suicide notes. Biomed
Inform Insights 2012;5(Suppl 1):87-97 [FREE Full text] [doi: 10.4137/BII.S8945] [Medline: 22879764]
95. Wang W, Chen L, Tan M, Wang S, Sheth AP. Discovering fine-grained sentiment in suicide notes. Biomed Inform Insights
2012;5(Suppl 1):137-145 [FREE Full text] [doi: 10.4137/BII.S8963] [Medline: 22879770]
96. Wicentowski R, Sydes MR. Emotion detection in suicide notes using maximum entropy classification. Biomed Inform
Insights 2012;5(Suppl 1):51-60 [FREE Full text] [doi: 10.4137/BII.S8972] [Medline: 22879760]
97. Xu Y, Wang Y, Liu J, Tu Z, Sun J, Tsujii J, et al. Suicide note sentiment classification: a supervised approach augmented
by web data. Biomed Inform Insights 2012;5(Suppl 1):31-41 [FREE Full text] [doi: 10.4137/BII.S8956] [Medline: 22879758]
98. Yang H, Willis A, de Roeck A, Nuseibeh B. A hybrid model for automatic emotion recognition in suicide notes. Biomed
Inform Insights 2012;5(Suppl 1):17-30 [FREE Full text] [doi: 10.4137/BII.S8948] [Medline: 22879757]
99. Yeh E, Jarrold W, Jordan J. Leveraging psycholinguistic resources and emotional sequence models for suicide note emotion
annotation. Biomed Inform Insights 2012;5(Suppl 1):155-163 [FREE Full text] [doi: 10.4137/BII.S8979] [Medline:
22879772]
100. Yu N, Kübler S, Herring J, Hsu Y, Israel R, Smiley C. LASSA: emotion detection via information fusion. Biomed Inform
Insights 2012;5(Suppl. 1):71-76 [FREE Full text] [doi: 10.4137/BII.S8949] [Medline: 22879762]
101. Mammen JR, Java JJ, Rhee H, Butz AM, Halterman JS, Arcoleo K. Mixed-methods content and sentiment analysis of
adolescents' voice diaries describing daily experiences with asthma and self-management decision-making. Clin Exp Allergy
2019 Mar;49(3):299-307. [doi: 10.1111/cea.13250] [Medline: 30113733]
102. Asghar MZ, Khan A, Ahmad S, Qasim M, Khan IA. Lexicon-enhanced sentiment analysis framework using rule-based
classification scheme. PLoS One 2017;12(2):e0171649 [FREE Full text] [doi: 10.1371/journal.pone.0171649] [Medline:
28231286]
103. Cobb NK, Mays D, Graham AL. Sentiment analysis to determine the impact of online messages on smokers' choices to
use varenicline. J Natl Cancer Inst Monogr 2013 Dec;2013(47):224-230. [doi: 10.1093/jncimonographs/lgt020] [Medline:
24395996]
104. Cohn AM, Amato MS, Zhao K, Wang X, Cha S, Pearson JL, et al. Discussions of alcohol use in an online social network
for smoking cessation: analysis of topics, sentiment, and social network centrality. Alcohol Clin Exp Res 2019
Jan;43(1):108-114. [doi: 10.1111/acer.13906] [Medline: 30326140]
105. Chu KH, Valente TW. How different countries addressed the sudden growth of e-cigarettes in an online tobacco control
community. BMJ Open 2015 May 21;5(5):e007654 [FREE Full text] [doi: 10.1136/bmjopen-2015-007654] [Medline:
25998038]
106. Chen Z, Zeng DD. Mining online e-liquid reviews for opinion polarities about e-liquid features. BMC Public Health 2017
Jul 7;17(1):633 [FREE Full text] [doi: 10.1186/s12889-017-4533-z] [Medline: 28683797]
107. Doing-Harris K, Mowery D, Daniels C, Chapman W, Conway M. Understanding patient satisfaction with received healthcare
services: a natural language processing approach. AMIA Annu Symp Proc 2016;2016:524-533 [FREE Full text] [Medline:
28269848]
108. Alemi F, Jasper H. An alternative to satisfaction surveys: let the patients talk. Qual Manag Health Care 2014;23(1):10-19.
[doi: 10.1097/QMH.0000000000000014] [Medline: 24368718]
109. Diorio C, Afanasiev M, Salena K, Marjerrison S. 'A world of competing sorrows': a mixed methods analysis of media
reports of children with cancer abandoning conventional treatment. PLoS One 2018;13(12):e0209738 [FREE Full text]
[doi: 10.1371/journal.pone.0209738] [Medline: 30576389]
110. Corley C, Mihalcea R, Mikler A, Sanfilippo A. Predicting individual affect of health interventions to reduce HPV prevalence. In: Arabnia H, Tran QN, editors. Software Tools and Algorithms for Biological Systems. New York, New York, USA:
Springer; 2011:181-190.
111. Jung H, Park H, Song T. Ontology-based approach to social data sentiment analysis: detection of adolescent depression
signals. J Med Internet Res 2017 Jul 24;19(7):e259 [FREE Full text] [doi: 10.2196/jmir.7452] [Medline: 28739560]
112. Chen L, Gong T, Kosinski M, Stillwell D, Davidson RL. Building a profile of subjective well-being for social media users.
PLoS One 2017;12(11):e0187278 [FREE Full text] [doi: 10.1371/journal.pone.0187278] [Medline: 29135991]
113. Rastegar-Mojarad M, Ye Z, Wall D, Murali N, Lin S. Collecting and analyzing patient experiences of health care from
social media. JMIR Res Protoc 2015 Jul 2;4(3):e78 [FREE Full text] [doi: 10.2196/resprot.3433] [Medline: 26137885]
114. Liu R, Zhang X, Zhang H. Web-video-mining-supported workflow modeling for laparoscopic surgeries. Artif Intell Med
2016 Nov;74:9-20. [doi: 10.1016/j.artmed.2016.11.002] [Medline: 27964803]
115. SVM light. URL: http://svmlight.joachims.org/ [accessed 2019-11-12]
116. Cauchois B. pysvmlight. URL: https://bitbucket.org/wcauchois/pysvmlight [accessed 2019-11-12]
117. LIBSVM -- A Library for Support Vector Machines. URL: https://www.csie.ntu.edu.tw/~cjlin/libsvm/ [accessed 2019-11-12]
118. Dashtipour K, Poria S, Hussain A, Cambria E, Hawalah AY, Gelbukh A, et al. Multilingual sentiment analysis: state of the
art and independent comparison of techniques. Cognit Comput 2016;8:757-771 [FREE Full text] [doi:
10.1007/s12559-016-9415-7] [Medline: 27563360]
119. Department of Computer Science: University of Waikato. URL: https://www.cs.waikato.ac.nz/ml/weka/ [accessed 2019-11-12]
120. scikit-learn. URL: https://scikit-learn.org/ [accessed 2019-11-12]
121. Keras Documentation. URL: https://keras.io/ [accessed 2019-11-12]
122. TextBlob: Simplified Text Processing. URL: https://textblob.readthedocs.io/en/dev/ [accessed 2019-11-12]
123. Wolpert DH. The lack of a priori distinctions between learning algorithms. Neural Comput 1996;8(7):1341-1390 [FREE
Full text] [doi: 10.1162/neco.1996.8.7.1341]
124. Hutto C, Gilbert E. Vader: A parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings
of Eighth International AAAI Conference on Weblogs and Social Media. 2014 Presented at: ICWSM-14; June 1–4, 2014;
Ann Arbor, Michigan, USA.
125. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le QV. XLNet: Generalized autoregressive pretraining for language
understanding. arXiv 2019 [FREE Full text]
126. Howard J, Ruder S. Universal Language Model Fine-tuning for Text Classification. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics. 2018 Presented at: ACL'18; July 15-20, 2018; Melbourne,
Australia p. 328-339. [doi: 10.18653/v1/p18-1031]
127. Gray S, Radford A, Kingma DP. GPU kernels for block-sparse weights. arXiv 2017 [FREE Full text]
128. Johnson R, Zhang T. Supervised and Semi-supervised Text Categorization Using LSTM for Region Embeddings. In:
Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48. 2016
Presented at: ICML'16; June 19 - 24, 2016; New York, New York, USA p. 526-534 URL: https://arxiv.org/abs/1602.02373
129. Xu H, Liu B, Shu L, Yu PS. BERT Post-training for review reading comprehension and aspect-based sentiment analysis.
In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1. 2019 Presented at: NAACL'19; June 3-5, 2019; Minneapolis, USA p. 2324-2335
URL: https://arxiv.org/abs/1904.02232
130. Huang B, Ou Y, Carley K. Aspect Level Sentiment Classification With Attention-over-attention Neural Networks. In:
International Conference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior Representation
in Modeling and Simulation. 2018 Presented at: SBP-BRiMS'18; July 10-13, 2018; Washington, DC, USA p. 197-206
URL: https://arxiv.org/abs/1804.06536 [doi: 10.1007/978-3-319-93372-6_22]
131. Li X, Bing L, Lam W, Shi B. Transformation Networks for Target-oriented Sentiment Classification. In: Proceedings of
the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 2018 Presented at:
ACL'18; July 15-20, 2018; Melbourne, Australia p. 946-956 URL: https://arxiv.org/abs/1805.01086 [doi:
10.18653/v1/p18-1087]
132. Chen P, Sun Z, Bing L, Yang W. Recurrent Attention Network on Memory for Aspect Sentiment Analysis. In: Proceedings
of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017 Presented at: the Conference on
Empirical Methods in Natural Language Processing; September 7–11, 2017; Copenhagen, Denmark p. 452-461 URL:
https://www.aclweb.org/anthology/D17-1047/ [doi: 10.18653/v1/d17-1047]
133. Xu H, Liu B, Shu L, Yu P. Double Embeddings and CNN-based Sequence Labeling for Aspect Extraction. In: Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2018 Presented
at: ACL'18; July 15-20, 2018; Melbourne, Australia p. 592-598 URL: https://www.aclweb.org/anthology/P18-2094/ [doi:
10.18653/v1/p18-2094]
134. Li X, Lam W. Deep Multi-task Learning for Aspect Term Extraction With Memory Interaction. In: Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing. 2017 Presented at: EMNLP'17; September 7–11,
2017; Copenhagen, Denmark p. 2886-2892 URL: https://www.aclweb.org/anthology/D17-1310/ [doi: 10.18653/v1/d17-1310]
135. Wang W, Pan S, Dahlmeier D, Xiao X. Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis.
In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 2016 Presented at:
EMNLP'16; November 1–5, 2016; Austin, Texas, USA p. 616-626 URL: https://www.aclweb.org/anthology/D16-1059/
[doi: 10.18653/v1/d16-1059]
136. Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D. The Stanford CoreNLP natural language processing
toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations.
2014 Presented at: ACL'14; June 22-27, 2014; Baltimore, Maryland, USA p. 55-60 URL: https://www.aclweb.org/anthology/
P14-5010/ [doi: 10.3115/v1/p14-5010]
137. Bird S. NLTK: The Natural Language Toolkit. In: Proceedings of the COLING/ACL on Interactive presentation sessions.
2006 Presented at: COLING-ACL'06; July 17 - 18, 2006; Sydney, Australia p. 69-72 URL: https://www.aclweb.org/
anthology/P06-4018/ [doi: 10.3115/1225403.1225421]
138. Friedman C, Kra P, Rzhetsky A. Two biomedical sublanguages: a description based on the theories of Zellig Harris. J
Biomed Inform 2002 Aug;35(4):222-235 [FREE Full text] [doi: 10.1016/s1532-0464(03)00012-1] [Medline: 12755517]
139. Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res
2004 Jan 1;32(Database issue):D267-D270 [FREE Full text] [doi: 10.1093/nar/gkh061] [Medline: 14681409]
140. Demner-Fushman D, Rogers WJ, Aronson AR. MetaMap Lite: an evaluation of a new Java implementation of MetaMap.
J Am Med Inform Assoc 2017 Jul 1;24(4):841-844 [FREE Full text] [doi: 10.1093/jamia/ocw177] [Medline: 28130331]
141. Bradley MM, Lang PJ. The University of Vermont. 1999. Affective Norms for English Words (ANEW): Instruction Manual
and Affective Ratings URL: https://www.uvm.edu/pdodds/teaching/courses/2009-08UVM-300/docs/others/everything/
bradley1999a.pdf [accessed 2019-11-12]
142. Center for the Study of Emotion and Attention. ANEW Message URL: https://csea.phhp.ufl.edu/media/anewmessage.html
[accessed 2019-11-12]
143. Nielsen FA. A new ANEW: Evaluation of a word list for sentiment analysis in microblogs. In: Proceedings of the ESWC
2011 Workshop on 'Making Sense of Microposts': Big things come in small packages. 2011 Presented at: ESWC'11; 2011;
Heraklion, Greece p. 93-98 URL: https://arxiv.org/abs/1103.2903
144. AFINN. URL: http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010 [accessed 2019-11-12]
145. Stone PJ, Dunphy DC, Smith MS, Ogilvie DM. General Inquirer: A Computer Approach to Content Analysis. Cambridge,
Massachusetts, USA: MIT Press; 1966.
146. Harvard General Inquirer. URL: http://www.wjh.harvard.edu/~inquirer/homecat.htm [accessed 2019-11-12]
147. Dodds PS, Harris KD, Kloumann IM, Bliss CA, Danforth CM. Temporal patterns of happiness and information in a global
social network: hedonometrics and Twitter. PLoS One 2011;6(12):e26752 [FREE Full text] [doi:
10.1371/journal.pone.0026752] [Medline: 22163266]
148. Language Assessment by Mechanical Turk (labMT) Sentiment Words. URL: https://trinker.github.io/qdapDictionaries/
labMT.html [accessed 2019-11-12]
149. Wilson T, Wiebe J, Hoffmann P. Recognizing Contextual Polarity in Phrase-level Sentiment Analysis. In: Proceedings of
the conference on Human Language Technology and Empirical Methods in Natural Language Processing. 2005 Presented
at: HLT'05; October 06 - 08, 2005; Vancouver, Canada p. 347-354 URL: https://dl.acm.org/citation.cfm?id=1220619 [doi:
10.3115/1220575.1220619]
150. MPQA. URL: http://mpqa.cs.pitt.edu/ [accessed 2019-11-12]
151. Mohammad SM, Turney PD. Crowdsourcing a word-emotion association lexicon. Comput Intel 2013;29(3):436-465 [FREE
Full text] [doi: 10.1111/j.1467-8640.2012.00460.x]
152. NRC Emotion Lexicon. URL: http://sentiment.nrc.ca/lexicons-for-research/ [accessed 2019-11-12]
153. OpinionKB. URL: https://doi.org/10.1371/journal.pone.0124993.s001
154. Opinion Lexicon. URL: https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon [accessed 2019-11-12]
155. de Albornoz JC, Plaza L, Gervás P. SentiSense: An easily scalable concept-based affective lexicon for sentiment analysis.
In: Proceedings of the Eighth International Conference on Language Resources and Evaluation. 2012 Presented at: LREC'12;
May 21-27, 2012; Istanbul, Turkey p. 3562-3567 URL: https://www.aclweb.org/anthology/L12-1089/
156. SentiSense Affective Lexicon. URL: http://nlp.uned.es/~jcalbornoz/SentiSense.html [accessed 2019-11-12]
157. Baccianella S, Esuli A, Sebastiani F. SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion
Mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation. 2010 Presented
at: LREC'10; May 17-23, 2010; Valletta, Malta p. 2200-2204 URL: https://www.aclweb.org/anthology/L10-1531/
158. SentiWordNet. URL: http://sentiwordnet.isti.cnr.it/ [accessed 2019-11-12]
159. Strapparava C, Valitutti A. WordNet Affect: An Affective Extension of WordNet. In: Proceedings of the Fourth International Conference on Language Resources and Evaluation. 2004 Presented at: LREC’04; May 26-28, 2004; Lisbon, Portugal
URL: https://www.aclweb.org/anthology/L04-1208/
160. WordNet Domains. WordNet-Affect URL: http://wndomains.fbk.eu/wnaffect.html [accessed 2019-11-12]
161. Turney PD, Littman ML. Measuring praise and criticism: Inference of semantic orientation from association. ACM Trans
Inf Syst 2003;21(4):315-346. [doi: 10.1145/944012.944013]
162. Taboada M, Anthony C, Voll K. Methods for Creating Semantic Orientation Dictionaries. In: Proceedings of the Fifth
International Conference on Language Resources and Evaluation. 2006 Presented at: LREC’06; May 22-28, 2006; Genoa,
Italy p. 427-432 URL: https://www.aclweb.org/anthology/L06-1250/
163. Du W, Tan S, Cheng X, Yun X. Adapting Information Bottleneck Method for Automatic Construction of Domain-oriented
Sentiment Lexicon. In: Proceedings of the third ACM international conference on Web search and data mining. 2010
Presented at: WSDM'10; February 4 - 6, 2010; New York, New York, USA p. 111-120 URL: https://dl.acm.org/citation.
cfm?id=1718502 [doi: 10.1145/1718487.1718502]
164. Miller GA. WordNet: a lexical database for English. Commun ACM 1995;38(11):39-41 [FREE Full text] [doi:
10.1145/219717.219748]
165. Kim S, Hovy E. Determining the Sentiment of Opinions. In: Proceedings of the 20th international conference on
Computational Linguistics. 2004 Presented at: COLING'04; August 23 - 27, 2004; Geneva, Switzerland URL: https://www.
aclweb.org/anthology/C04-1200/ [doi: 10.3115/1220355.1220555]
166. Kamps J, Marx M, Mokken R, Rijke M. Using WordNet to Measure Semantic Orientations of Adjectives. In: Proceedings
of the Fourth International Conference on Language Resources and Evaluation. 2004 Presented at: LREC’04; May 26-28,
2004; Lisbon, Portugal p. 1115-1118 URL: https://www.aclweb.org/anthology/L04-1473/
167. Hassan A, Radev D. Identifying Text Polarity Using Random Walks. In: Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. 2010 Presented at: ACL'10; July 11 - 16, 2010; Uppsala, Sweden p. 395-403
URL: https://www.aclweb.org/anthology/P10-1041/
168. Dragut E, Yu C, Sistla P, Meng W. Construction of a Sentimental Word Dictionary. In: Proceedings of the 19th ACM
international conference on Information and knowledge management. 2010 Presented at: CIKM'10; October 26 - 30, 2010;
Toronto, Canada p. 1761-1764. [doi: 10.1145/1871437.1871723]
169. Lu Y, Castellanos M, Dayal U, Zhai C. Automatic Construction of a Context-aware Sentiment Lexicon: An Optimization
Approach. In: Proceedings of the 20th international conference on World wide web. 2011 Presented at: WWW'11; March 28 - April 1, 2011; Hyderabad, India p. 347-356 URL: https://dl.acm.org/citation.cfm?id=1963456 [doi:
10.1145/1963405.1963456]
https://medinform.jmir.org/2020/1/e16023