Thursday, December 31, 2020

Online Reviews Over Sentiment Analysis using Machine Learning: A Systematic Review



Abstract

One of the key territories of NLP is Sentiment Analysis, the capacity to comprehend emotional tones in speech and text. 

This Systematic Literature Review has focused on papers between 2015 to 2020, taken from trusted and credible database such as IEEE Xplore, Science Direct and Springer. A total of 70 papers have been chosen for this review. 

This SLR approach is followed to get an effective insight on various work being done in this research field using Machine learning techniques: supervised or unsupervised. Different research questions have been looked up and discussed. 

The result shows that most of the work have used SVM for classification techniques and accuracy as the performance metrics. 

Also most of the dataset are yielded from e-commerce sites for product reviews, reviews in form of tweets from twitter and in various other fields like hospitality reviews, movie reviews and other social networking sites opinions.


Key words: SVM, Machine Learning, SLR


REFERENCES:

[1] P. Nagamma, H. R. Pruthvi, K. K. Nisha, and N. H. Shwetha, “An improved sentiment analysis of online movie

reviews based on clustering for box-office prediction,” Int. Conf. Comput. Commun. Autom. ICCCA 2015, pp. 933–

937, 2015, doi: 10.1109/CCAA.2015.7148530.


[2] D. S. Nair, J. P. Jayan, R. R. Rajeev, and E. Sherly, “Sentiment Analysis of Malayalam film review using machine

learning techniques,” 2015 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2015, pp. 2381–2384, 2015, doi:

10.1109/ICACCI.2015.7275974.


[3] A. Mukwazvure and K. P. Supreethi, “A hybrid approach to sentiment analysis of news comments,” 2015 4th Int.

Conf. Reliab. Infocom Technol. Optim. Trends Futur. Dir. ICRITO 2015, 2015, doi: 10.1109/ICRITO.2015.7359282.


[4] G. Vinodhini and R. M. Chandrasekaran, “Sentiment classification using principal component analysis based neural

network model,” 2014 Int. Conf. Inf. Commun. Embed. Syst. ICICES 2014, no. 978, pp. 1–6, 2015, doi:

10.1109/ICICES.2014.7033961.


[5] P. H. Shahana and B. Omman, “Evaluation of features on sentimental analysis,” Procedia Comput. Sci., vol. 46, no.

Icict 2014, pp. 1585–1592, 2015, doi: 10.1016/j.procs.2015.02.088.


[6] C. Bhadane, H. Dalal, and H. Doshi, “Sentiment analysis: Measuring opinions,” Procedia Comput. Sci., vol. 45, no.

C, pp. 808–814, 2015, doi: 10.1016/j.procs.2015.03.159.


[7] P. G. Preethi, V. Uma, and A. Kumar, “Temporal sentiment analysis and causal rules extraction from tweets for event

prediction,” Procedia Comput. Sci., vol. 48, no. C, pp. 84–89, 2015, doi: 10.1016/j.procs.2015.04.154.


[8] A. Gelbukh, “Computational Linguistics and Intelligent Text Processing: 16th International Conference, CICLing

2015 Cairo, Egypt, April 14-20, 2015 Proceedings, Part II,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 9042, pp. 114–125, 2015, doi: 10.1007/978-3-319-18117-2.


[9] R. Ghosh, K. Ravi, and V. Ravi, “A novel deep learning architecture for sentiment classification,” 2016 3rd Int. Conf.

Recent Adv. Inf. Technol. RAIT 2016, pp. 511–516, 2016, doi: 10.1109/RAIT.2016.7507953.


[10] A. Salinca, “Business Reviews Classification Using Sentiment Analysis,” Proc. - 17th Int. Symp. Symb. Numer.

Algorithms Sci. Comput. SYNASC 2015, pp. 247–250, 2016, doi: 10.1109/SYNASC.2015.46.


[11] L. B. R. Thapa and B. K. Bal, “Classifying sentiments in Nepali subjective texts,” IISA 2016 - 7th Int. Conf.

Information, Intell. Syst. Appl., 2016, doi: 10.1109/IISA.2016.7785374.


[12] N. M. De Mel, H. H. Hettiarachchi, W. P. D. Madusanka, G. L. Malaka, A. S. Perera, and U. Kohomban, “Machine

learning approach to recognize subject based sentiment values of reviews,” 2nd Int. Moratuwa Eng. Res. Conf.

MERCon 2016, pp. 6–11, 2016, doi: 10.1109/MERCon.2016.7480107.


[13] A. M. Alkalbani, A. M. Ghamry, F. K. Hussain, and O. K. Hussain, “Sentiment analysis and classification for

software as a service reviews,” Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA, vol. 2016-May, pp. 53–58, 2016, doi:

10.1109/AINA.2016.148.


[14] R. Joshi and R. Tekchandani, “Comparative analysis of twitter data using supervised classifiers,” Proc. Int. Conf.

Inven. Comput. Technol. ICICT 2016, vol. 2016, 2016, doi: 10.1109/INVENTIVE.2016.7830089.


[15] D. Anand and D. Naorem, “Semi-supervised Aspect Based Sentiment Analysis for Movies Using Review Filtering,”

Procedia Comput. Sci., vol. 84, pp. 86–93, 2016, doi: 10.1016/j.procs.2016.04.070.


[16] M. D. Devika, C. Sunitha, and A. Ganesh, “Sentiment Analysis: A Comparative Study on Different Approaches,”

Procedia Comput. Sci., vol. 87, pp. 44–49, 2016, doi: 10.1016/j.procs.2016.05.124.


[17] M. Wu, Z. Qiu, S. Hong, and H. Li, “Real-Time Anomaly Detection over ECG Data,” APWeb, vol. 2, pp. 56–67,

2016, doi: 10.1007/978-3-319-45817-5.


[18] W. C. T. and J. C. M. S. Arrieta Rodriguez Eugenia, Francisco Edna Estrada, “Advances in Artificial Intelligence -

IBERAMIA 2016,” vol. 10022, no. November, pp. 259–70, 2016, doi: 10.1007/978-3-319-47955-2.


[19] A. M. Alayba, V. Palade, M. England, and R. Iqbal, “Arabic language sentiment analysis on health services,” 2017

IEEE Int. Work. Arab. Scr. Anal. Recognit. Arab., pp. 114–118, 2017, doi: 10.1109/asar.2017.8067771.


[20] K. L. Santhosh Kumar, J. Desai, and J. Majumdar, “Opinion mining and sentiment analysis on online customer

review,” 2016 IEEE Int. Conf. Comput. Intell. Comput. Res. ICCIC 2016, pp. 1–4, 2017, doi:

10.1109/ICCIC.2016.7919584.


[21] Z. Singla, S. Randhawa, and S. Jain, “Statistical and Sentiment Analysis,” pp. 1–6, 2017.


[22] R. Hegde and S. Seema, “Aspect based feature extraction and sentiment classification of review data sets using

Incremental machine learning algorithm,” Proc. 3rd IEEE Int. Conf. Adv. Electr. Electron. Information, Commun.

Bio-Informatics, AEEICB 2017, pp. 122–125, 2017, doi: 10.1109/AEEICB.2017.7972395.


[23] T. K. Shivaprasad and J. Shetty, “Sentiment analysis of product reviews: A review,” Proc. Int. Conf. Inven. Commun.

Comput. Technol. ICICCT 2017, no. Icicct, pp. 298–303, 2017, doi: 10.1109/ICICCT.2017.7975207.


[24] C. Sindhu, D. V. Vyas, and K. Pradyoth, “Sentiment analysis based product rating using textual reviews,” Proc. Int.

Conf. Electron. Commun. Aerosp. Technol. ICECA 2017, vol. 2017-Janua, pp. 427–731, 2017, doi:

10.1109/ICECA.2017.8212762.


[25] S. Rana and A. Singh, “Comparative analysis of sentiment orientation using SVM and Naive Bayes techniques,”

Proc. 2016 2nd Int. Conf. Next Gener. Comput. Technol. NGCT 2016, no. October, pp. 106–111, 2017, doi:

10.1109/NGCT.2016.7877399.


[26] S. Dhar, S. Pednekar, K. Borad, and A. Save, “Sentiment Analysis Using Neural Networks: A New Approach,” Proc.

Int. Conf. Inven. Commun. Comput. Technol. ICICCT 2018, no. Icicct, pp. 1220–1224, 2018, doi:

10.1109/ICICCT.2018.8473049.


[27] T. Dholpuria, Y. K. Rana, and C. Agrawal, “A sentiment analysis approach through deep learning for a movie

review,” Proc. - 2018 8th Int. Conf. Commun. Syst. Netw. Technol. CSNT 2018, pp. 173–181, 2018, doi:

10.1109/CSNT.2018.8820260.


[28] A. Shelar and C. Y. Huang, “Sentiment analysis of twitter data,” Proc. - 2018 Int. Conf. Comput. Sci. Comput. Intell.

CSCI 2018, no. Iciccs, pp. 1301–1302, 2018, doi: 10.1109/CSCI46756.2018.00252.


[29] C. Nanda, M. Dua, and G. Nanda, “Sentiment Analysis of Movie Reviews in Hindi Language Using Machine

Learning,” Proc. 2018 IEEE Int. Conf. Commun. Signal Process. ICCSP 2018, pp. 1069–1072, 2018, doi:

10.1109/ICCSP.2018.8524223.


[30] D. Mahajan and D. Kumar Chaudhary, “Sentiment Analysis Using Rnn and Google Translator,” Proc. 8th Int. Conf.

Conflu. 2018 Cloud Comput. Data Sci. Eng. Conflu. 2018, pp. 798–802, 2018, doi:

10.1109/CONFLUENCE.2018.8442924.


[31] C. N. Krishna, P. Vidya Sagar, and N. R. Moparthi, “Sentiment analysis of top colleges,” Proc. 4th IEEE Int. Conf.

Adv. Electr. Electron. Information, Commun. Bio-Informatics, AEEICB 2018, pp. 1–5, 2018, doi:

10.1109/AEEICB.2018.8480987.


[32] F. J. Ramírez-Tinoco, G. Alor-Hernández, J. L. Sánchez-Cervantes, B. A. Olivares-Zepahua, and L. Rodríguez-

Mazahua, “A brief review on the use of sentiment analysis approaches in social networks,” Adv. Intell. Syst.

Comput., vol. 688, pp. 263–273, 2018, doi: 10.1007/978-3-319-69341-5_24.


[33] M. S. Akhtar, A. Ekbal, and P. Bhattacharyya, “Aspect based sentiment analysis: category detection and sentiment

classification for hindi,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 9624 LNCS, pp. 246–257, 2018, doi: 10.1007/978-3-319-75487-1_19.


[34] M. Nafees, H. Dar, S. Tiwana, and I. U. Lali, “Sentiment analysis of polarity in product reviews in social media,”

2018 14th Int. Conf. Emerg. Technol. ICET 2018, pp. 1–6, 2019, doi: 10.1109/ICET.2018.8603585.


[35] J. Jabbar, I. Urooj, W. Junsheng, and N. Azeem, “Real-time sentiment analysis on E-Commerce application,” Proc.

2019 IEEE 16th Int. Conf. Networking, Sens. Control. ICNSC 2019, pp. 391–396, 2019, doi:

10.1109/ICNSC.2019.8743331.


[36] Y. Gupta and P. Kumar, “Real-Time Sentiment Analysis of Tweets: A Case Study of Punjab Elections,” Proc. 2019

3rd IEEE Int. Conf. Electr. Comput. Commun. Technol. ICECCT 2019, pp. 1–12, 2019, doi: 

10.1109/ICECCT.2019.8869203.


[37] A. Alrehili and K. Albalawi, “Sentiment analysis of customer reviews using ensemble method,” 2019 Int. Conf.

Comput. Inf. Sci. ICCIS 2019, pp. 1–6, 2019, doi: 10.1109/ICCISci.2019.8716454.


[38] Z. Drus and H. Khalid, “Sentiment analysis in social media and its application: Systematic literature review,”

Procedia Comput. Sci., vol. 161, pp. 707–714, 2019, doi: 10.1016/j.procs.2019.11.174.


[39] J. Singvejakul, C. Chaiboonsri, and S. Sriboonchitta, The Dependence Structure and Portfolio Optimization in

Economic Cycles : An Metadata of the chapter that will be visualized in SpringerLink, vol. 2, no. March. Springer

International Publishing, 2019.


[40] Rahul, V. Raj, and Monika, “Sentiment Analysis on Product Reviews,” 2019 Int. Conf. Comput. Commun. Intell.

Syst. Sentim., pp. 5–9, 2020, doi: 10.1109/icccis48478.2019.8974527.


[41] M. V. Mäntylä, D. Graziotin, and M. Kuutila, “The evolution of sentiment analysis—A review of research topics,

venues, and top cited papers,” Comput. Sci. Rev., vol. 27, pp. 16–32, 2018, doi: 10.1016/j.cosrev.2017.10.002.


[42] Y. Fang, H. Tan, and J. Zhang, “Multi-strategy sentiment analysis of consumer reviews based on semantic

fuzziness,” IEEE Access, vol. 6, pp. 20625–20631, 2018, doi: 10.1109/ACCESS.2018.2820025.


[43] X. Yuan, M. Sun, Z. Chen, J. Gao, and P. Li, “Semantic Clustering-Based Deep Hypergraph Model for Online

Reviews Semantic Classification in Cyber-Physical-Social Systems,” IEEE Access, vol. 6, pp. 17942–17951, 2018,

doi: 10.1109/ACCESS.2018.2813419.


[44] F. Long, K. Zhou, and W. Ou, “Sentiment analysis of text based on bidirectional LSTM with multi-head attention,”

IEEE Access, vol. 7, pp. 141960–141969, 2019, doi: 10.1109/ACCESS.2019.2942614.


[45] W. Zhao et al., “Weakly-supervised deep embedding for product review sentiment analysis,” IEEE Trans. Knowl.

Data Eng., vol. 30, no. 1, pp. 185–197, 2018, doi: 10.1109/TKDE.2017.2756658.


[46] R. Xia, F. Xu, C. Zong, Q. Li, Y. Qi, and T. Li, “Dual Sentiment Analysis: Considering Two Sides of One Review,”

IEEE Trans. Knowl. Data Eng., vol. 27, no. 8, pp. 2120–2133, 2015, doi: 10.1109/TKDE.2015.2407371.


[47] E. Tyagi and A. K. Sharma, “Sentiment Analysis of Product Reviews using Support Vector Machine Learning

Algorithm,” Indian J. Sci. Technol., vol. 10, no. 35, pp. 1–9, 2017, doi: 10.17485/ijst/2017/v10i35/118965.


[48] G. Kaur and A. Singla, “Algorithm, Sentimental Analysis ofFlipkart reviews using Naïve Bayes and Decision Tree,”

Int. J. ofAdvanced Res. Comput. Eng. Technol., vol. 5, no. 1, pp. 148–153, 2016.


[49] R. Ireland and A. Liu, “Application of data analytics for product design: Sentiment analysis of online product

reviews,” CIRP J. Manuf. Sci. Technol., vol. 23, pp. 128–144, 2018, doi: 10.1016/j.cirpj.2018.06.003.


[50] A. Squicciarini, A. Tapia, and S. Stehle, “Sentiment analysis during Hurricane Sandy in emergency response,” Int. J.

Disaster Risk Reduct., vol. 21, no. May 2016, pp. 213–222, 2017, doi: 10.1016/j.ijdrr.2016.12.011.


[51] J. Salminen, V. Yoganathan, J. Corporan, B. J. Jansen, and S. G. Jung, “Machine learning approach to auto-tagging

online content for content marketing efficiency: A comparative analysis between methods and content type,” J. Bus.

Res., vol. 101, no. April, pp. 203–217, 2019, doi: 10.1016/j.jbusres.2019.04.018.


[52] Z. P. Fan, Y. J. Che, and Z. Y. Chen, “Product sales forecasting using online reviews and historical sales data: A

method combining the Bass model and sentiment analysis,” J. Bus. Res., vol. 74, pp. 90–100, 2017, doi:

10.1016/j.jbusres.2017.01.010.


[53] T. Antretter, I. Blohm, D. Grichnik, and J. Wincent, “Predicting new venture survival: A Twitter-based machine

learning approach to measuring online legitimacy,” J. Bus. Ventur. Insights, vol. 11, no. December, pp. 1–8, 2019,

doi: 10.1016/j.jbvi.2018.e00109.


[54] H. Rahab, A. Zitouni, and M. Djoudi, “SANA: Sentiment analysis on newspapers comments in Algeria,” J. King

Saud Univ. - Comput. Inf. Sci., no. xxxx, 2019, doi: 10.1016/j.jksuci.2019.04.012.


[55] B. Brahimi, M. Touahria, and A. Tari, “Improving sentiment analysis in Arabic: A combined approach,” J. King

Saud Univ. - Comput. Inf. Sci., no. xxxx, 2019, doi: 10.1016/j.jksuci.2019.07.011.


[56] G. Vinodhini and R. M. Chandrasekaran, “A comparative performance evaluation of neural network based approach

for sentiment classification of online reviews,” J. King Saud Univ. - Comput. Inf. Sci., vol. 28, no. 1, pp. 2–12, 2016,

doi: 10.1016/j.jksuci.2014.03.024.


[57] Q. Umer, H. Liu, and Y. Sultan, “Sentiment based approval prediction for enhancement reports,” J. Syst. Softw., vol.

155, pp. 57–69, 2019, doi: 10.1016/j.jss.2019.05.026.


[58] K. Dashtipour et al., “Multilingual Sentiment Analysis: State of the Art and Independent Comparison of Techniques,”

Cognit. Comput., vol. 8, no. 4, pp. 757–771, 2016, doi: 10.1007/s12559-016-9415-7.


[59] J. Singh, G. Singh, and R. Singh, “A review of sentiment analysis techniques for opinionated web text,” CSI Trans.

ICT, vol. 4, no. 2–4, pp. 241–247, 2016, doi: 10.1007/s40012-016-0107-y.


[60] S. S. Shekhawat, S. Shringi, and H. Sharma, “Twitter sentiment analysis using hybrid Spider Monkey optimization

method,” Evol. Intell., no. 0123456789, 2020, doi: 10.1007/s12065-019-00334-2.


[61] E. Ibeke, C. Lin, A. Wyner, and M. H. Barawi, “A unified latent variable model for contrastive opinion mining,”

Front. Comput. Sci., vol. 14, no. 2, pp. 404–416, 2020, doi: 10.1007/s11704-018-7073-5.


[62] J. Singh, G. Singh, and R. Singh, “Optimization of sentiment analysis using machine learning classifiers,” Human-

centric Comput. Inf. Sci., vol. 7, no. 1, 2017, doi: 10.1186/s13673-017-0116-3.


[63] J. Neidhardt, N. Rümmele, and H. Werthner, “Predicting happiness: user interactions and sentiment analysis in an

online travel forum,” Inf. Technol. Tour., vol. 17, no. 1, pp. 101–119, 2017, doi: 10.1007/s40558-017-0079-2.


[64] Z. Wang, X. Zhou, W. Wang, and C. Liang, “Emotion recognition using multimodal deep learning in multiple

psychophysiological signals and video,” Int. J. Mach. Learn. Cybern., vol. 11, no. 4, pp. 923–934, 2020, doi:

10.1007/s13042-019-01056-8.


[65] F. T. Giuntini, M. T. Cazzolato, M. de J. D. dos Reis, A. T. Campbell, A. J. M. Traina, and J. Ueyama, “A review on

recognizing depression in social networks: challenges and opportunities,” J. Ambient Intell. Humaniz. Comput., no.

2016, 2020, doi: 10.1007/s12652-020-01726-4.


[66] M. Crawford, T. M. Khoshgoftaar, J. D. Prusa, A. N. Richter, and H. Al Najada, “Survey of review spam detection

using machine learning techniques,” J. Big Data, vol. 2, no. 1, 2015, doi: 10.1186/s40537-015-0029-9.


[67] A. Tripathy, A. Anand, and S. K. Rath, “Document-level sentiment classification using hybrid machine learning

approach,” Knowl. Inf. Syst., vol. 53, no. 3, pp. 805–831, 2017, doi: 10.1007/s10115-017-1055-z.


[68] Z. Rahimi, S. Noferesti, and M. Shamsfard, “Applying data mining and machine learning techniques for sentiment

shifter identification,” Lang. Resour. Eval., vol. 53, no. 2, pp. 279–302, 2019, doi: 10.1007/s10579-018-9432-0.


[69] J. Li, S. Fong, Y. Zhuang, and R. Khoury, “Hierarchical classification in text mining for sentiment analysis of online

news,” Soft Comput., vol. 20, no. 9, pp. 3411–3420, 2016, doi: 10.1007/s00500-015-1812-4.


[70] N. Rathee, N. Joshi, and J. Kaur, “Sentiment Analysis Using Machine Learning Techniques on Python,” Proc. 2nd

Int. Conf. Intell. Comput. Control Syst. ICICCS 2018, no. Iciccs, pp. 779–785, 2019, doi:

10.1109/ICCONS.2018.8663224.


[71] M. Nafees, H. Dar, S. Tiwana, and I. U. Lali, “Sentiment analysis of polarity in product reviews in social media,”

2018 14th Int. Conf. Emerg. Technol. ICET 2018, no. January, pp. 1–6, 2019, doi: 10.1109/ICET.2018.8603585.


[72] A. Alsaffar and N. Omar, “Study on feature selection and machine learning algorithms for Malay sentiment

classification,” Conf. Proc. - 6th Int. Conf. Inf. Technol. Multimed. UNITEN Cultiv. Creat. Enabling Technol.

Through Internet Things, ICIMU 2014, pp. 270–275, 2015, doi: 10.1109/ICIMU.2014.7066643.


[73] Y. Wan, H. Nie, T. Lan, and Z. Wang, “Fine-grained sentiment analysis of online reviews,” 2015 12th Int. Conf.

Fuzzy Syst. Knowl. Discov. FSKD 2015, no. 71471019, pp. 1406–1411, 2016, doi: 10.1109/FSKD.2015.7382150.


[74] A. Yang, J. Zhang, L. Pan, and Y. Xiang, “Enhanced twitter sentiment analysis by using feature selection and

combination,” Proc. - 2015 Int. Symp. Secur. Priv. Soc. Networks Big Data, Soc. 2015, pp. 52–57, 2016, doi:

10.1109/SocialSec2015.9.


[75] J. K. Rout, A. Dalmia, K. K. R. Choo, S. Bakshi, and S. K. Jena, “Revisiting semi-supervised learning for online

deceptive review detection,” IEEE Access, vol. 5, no. c, pp. 1319–1327, 2017, doi: 10.1109/ACCESS.2017.2655032.


[76] X. Wang, L. Wan, and J. Zhang, “An Active Learning Framework Based on Query-By-Committee for Sentiment

Analysis,” Proc. 2019 IEEE Int. Conf. Artif. Intell. Comput. Appl. ICAICA 2019, pp. 327–331, 2019, doi:

10.1109/ICAICA.2019.8873452.


[77] E. Tyagi and A. K. Sharma, “An intelligent framework for sentiment analysis of text and emotions - A review,” 2017

Int. Conf. Energy, Commun. Data Anal. Soft Comput. ICECDS 2017, pp. 3297–3302, 2018, doi:

10.1109/ICECDS.2017.8390069.


[78] Y. Li, Z. Qin, W. Xu, and J. Guo, “A holistic model of mining product aspects and associated sentiments from online

reviews,” Multimed. Tools Appl., vol. 74, no. 23, pp. 10177–10194, 2015, doi: 10.1007/s11042-014-2158-0.


[79] L. Zheng, H. Wang, and S. Gao, “Sentimental feature selection for sentiment analysis of Chinese online reviews,”

Int. J. Mach. Learn. Cybern., vol. 9, no. 1, pp. 75–84, 2018, doi: 10.1007/s13042-015-0347-4.


[80] S. Zhang and H. Zhong, “Mining Users Trust From E-Commerce Reviews Based on Sentiment Similarity Analysis,”

IEEE Access, vol. 7, pp. 13523–13535, 2019, doi: 10.1109/ACCESS.2019.2893601.


[81] A. D. Vo, Q. P. Nguyen, and C. Y. Ock, “Opinion-Aspect Relations in Cognizing Customer Feelings via Reviews,”

IEEE Access, vol. 6, pp. 5415–5426, 2018, doi: 10.1109/ACCESS.2018.2797224.


[82] D. Jiang, X. Luo, J. Xuan, and Z. Xu, “Sentiment computing for the news event based on the social media big data,”

IEEE Access, vol. 5, pp. 2373–2382, 2017, doi: 10.1109/ACCESS.2016.2607218.


[83] D. Ekawati and M. L. Khodra, “Aspect-based sentiment analysis for Indonesian restaurant reviews,” Proc. - 2017 Int.

Conf. Adv. Informatics Concepts, Theory Appl. ICAICTA 2017, 2017, doi: 10.1109/ICAICTA.2017.8090963.


[84] J. Zhang, D. Chen, and M. Lu, “Combining sentiment analysis with a fuzzy kano model for product aspect preference

recommendation,” IEEE Access, vol. 6, pp. 59163–59172, 2018, doi: 10.1109/ACCESS.2018.2875026.


[85] L. zhen Liu, H. Liu, H. shi Wang, W. Song, and X. lei Zhao, “Generating domain-specific affective ontology from

Chinese reviews for sentiment analysis,” J. Shanghai Jiaotong Univ., vol. 20, no. 1, pp. 32–37, 2015, doi:

10.1007/s12204-015-1584-0.


[86] Q. Zhou, R. Xia, and C. Zhang, “Online Shopping Behavior Study Based on Multi-granularity Opinion Mining:

China Versus America,” Cognit. Comput., vol. 8, no. 4, pp. 587–602, 2016, doi: 10.1007/s12559-016-9384-x.


[87] H. Yuan, W. Xu, Q. Li, and R. Lau, “Topic sentiment mining for sales performance prediction in e-commerce,” Ann.

Oper. Res., vol. 270, no. 1–2, pp. 553–576, 2018, doi: 10.1007/s10479-017-2421-7.


[88] B. Bansal and S. Srivastava, “Hybrid attribute based sentiment classification of online reviews for consumer

intelligence,” Appl. Intell., vol. 49, no. 1, pp. 137–149, 2019, doi: 10.1007/s10489-018-1299-7.


[89] S. Rani and P. Kumar, “A journey of Indian languages over sentiment analysis: a systematic review,” Artif. Intell.

Rev., vol. 52, no. 2, pp. 1415–1462, 2019, doi: 10.1007/s10462-018-9670-y.


[90] N. Antonio, A. de Almeida, L. Nunes, F. Batista, and R. Ribeiro, “Hotel online reviews: different languages, different

opinions,” Inf. Technol. Tour., vol. 18, no. 1–4, pp. 157–185, 2018, doi: 10.1007/s40558-018-0107-x.


[91] M. Ghosh and G. Sanyal, “An ensemble approach to stabilize the features for multi-domain sentiment analysis using

supervised machine learning,” J. Big Data, vol. 5, no. 1, 2018, doi: 10.1186/s40537-018-0152-5.


[92] R. Arulmurugan, K. R. Sabarmathi, and H. Anandakumar, “Classification of sentence level sentiment analysis using

cloud machine learning techniques,” Cluster Comput., vol. 22, no. s1, pp. 1199–1209, 2019, doi: 10.1007/s10586-

017-1200-1.


[93] X. Lei, X. Qian, and G. Zhao, “Rating Prediction Based on Social Sentiment from Textual Reviews,” IEEE Trans.

Multimed., vol. 18, no. 9, pp. 1910–1921, 2016, doi: 10.1109/TMM.2016.2575738.


[94] B. Shamantha Rai, S. M. Shetty, and P. Rai, “Sentiment analysis using Machine learning classifiers: Evaluation of

performance,” 2019 IEEE 4th Int. Conf. Comput. Commun. Syst. ICCCS 2019, pp. 21–25, 2019, doi:

10.1109/CCOMS.2019.8821650.


[95] S. K. Chauhan, A. Goel, P. Goel, A. Chauhan, and M. K. Gurve, “Research on product review analysis and spam

review detection,” 2017 4th Int. Conf. Signal Process. Integr. Networks, SPIN 2017, pp. 390–393, 2017, doi:

10.1109/SPIN.2017.8049980.


[96] E. Laoh, I. Surjandari, and N. I. Prabaningtyas, “Enhancing hospitality sentiment reviews analysis performance using

SVM N-grams method,” 2019 16th Int. Conf. Serv. Syst. Serv. Manag. ICSSSM 2019, pp. 1–5, 2019, doi:

10.1109/ICSSSM.2019.8887662.


[97] T. Karthikayini and N. K. Srinath, “Comparative Polarity Analysis on Amazon Product Reviews Using Existing

Machine Learning Algorithms,” 2nd Int. Conf. Comput. Syst. Inf. Technol. Sustain. Solut. CSITSS 2017, pp. 1–6,

2018, doi: 10.1109/CSITSS.2017.8447660.


[98] S. Pasarate and R. Shedge, “Comparative study of feature extraction techniques used in sentiment analysis,” 2016 1st

Int. Conf. Innov. Challenges Cyber Secur. ICICCS 2016, no. Iciccs, pp. 182–186, 2016, doi:

10.1109/ICICCS.2016.7542328.

[99] A. Husnain, S. M. U. Din, G. Hussain, and Y. Ghayor, “Estimating market trends by clustering social media

reviews,” Proc. - 2017 13th Int. Conf. Emerg. Technol. ICET2017, vol. 2018-Janua, pp. 1–6, 2018, doi:

10.1109/ICET.2017.8281716.

[100] Anshuman, S. Rao, and M. Kakkar, “A rating approach based on sentiment analysis,” Proc. 7th Int. Conf. Conflu.

2017 Cloud Comput. Data Sci. Eng., pp. 557–562, 2017, doi: 10.1109/CONFLUENCE.2017.7943213.

[101] Y. Sharma, G. Agrawal, P. Jain, and T. Kumar, “Vector representation of words for sentiment analysis using GloVe,”

ICCT 2017 - Int. Conf. Intell. Commun. Comput. Tech., vol. 2018-Janua, pp. 279–284, 2018, doi:

10.1109/INTELCCT.2017.8324059.

[102] S. Chakraborty, I. Mobin, A. Roy, and M. H. Khan, “Rating Generation of Video Games using Sentiment Analysis

and Contextual Polarity from Microblog,” Proc. Int. Conf. Comput. Tech. Electron. Mech. Syst. CTEMS 2018, pp.

157–161, 2018, doi: 10.1109/CTEMS.2018.8769149.

[103] S. Sun and X. Gu, “Support vector machine equipped with deep convolutional features for product reviews

classification,” ICNC-FSKD 2017 - 13th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov., pp. 130–135, 2018,

doi: 10.1109/FSKD.2017.8392953.

[104] T. U. Haque, N. N. Saber, and F. M. Shah, “Sentiment analysis on large scale Amazon product reviews,” 2018 IEEE

Int. Conf. Innov. Res. Dev. ICIRD 2018, no. May, pp. 1–6, 2018, doi: 10.1109/ICIRD.2018.8376299.

[105] M. Kranzlein and D. C. T. Lo, “Training on the poles for review sentiment polarity classification,” Proc. - 2017 IEEE

Int. Conf. Big Data, Big Data 2017, vol. 2018-Janua, pp. 3934–3937, 2017, doi: 10.1109/BigData.2017.8258401.


[106] Z. Fachrina and D. H. Widyantoro, “Aspect-sentiment classification in opinion mining using the combination of rule-

based and machine learning,” Proc. 2017 Int. Conf. Data Softw. Eng. ICoDSE 2017, vol. 2018-Janua, pp. 1–6, 2018,

doi: 10.1109/ICODSE.2017.8285850.


[107] D. Ansari, “Sentiment Polarity Classification Using Structural Features,” Proc. - 15th IEEE Int. Conf. Data Min.

Work. ICDMW 2015, pp. 1270–1273, 2016, doi: 10.1109/ICDMW.2015.57.


[108] W. Sharif, N. A. Samsudin, M. M. Deris, and R. Naseem, “Effect of negation in sentiment analysis,” 2016 6th Int.

Conf. Innov. Comput. Technol. INTECH 2016, pp. 718–723, 2017, doi: 10.1109/INTECH.2016.7845119.


[109] S. D. Tembhurnikar and N. N. Patil, “Topic detection using BNgram method and sentiment analysis on twitter

dataset,” 2015 4th Int. Conf. Reliab. Infocom Technol. Optim. Trends Futur. Dir. ICRITO 2015, pp. 1–6, 2015, doi:

10.1109/ICRITO.2015.7359267.


[110] M. Y. Raut and S. S. Barve, “A semi-automated review classification system based on supervised machine learning,”

Proc. - 1st Int. Conf. Intell. Syst. Inf. Manag. ICISIM 2017, vol. 2017-Janua, pp. 127–133, 2017, doi:

10.1109/ICISIM.2017.8122162.


[111] A. Cernian, V. Sgarciu, and B. Martin, “Sentiment analysis from product reviews using SentiWordNet as lexical

resource,” Proc. 2015 7th Int. Conf. Electron. Comput. Artif. Intell. ECAI 2015, pp. WE15–WE18, 2015, doi:

10.1109/ECAI.2015.7301224.


[112] E. Cambria, M. Ebrahimi, A. Hossein Yazdavar, A. Sheth, and K. Center, “AFFECTIVE COMPUTING AND

SENTIMENT ANALYSIS Challenges of Sentiment Analysis for Dynamic Events,” 2017, doi:

10.1109/MIS.2017.3711649.


[113] A. Ilmania, Abdurrahman, S. Cahyawijaya, and A. Purwarianti, “Aspect Detection and Sentiment Classification

Using Deep Neural Network for Indonesian Aspect-Based Sentiment Analysis,” Proc. 2018 Int. Conf. Asian Lang.

Process. IALP 2018, pp. 62–67, 2019, doi: 10.1109/IALP.2018.8629181.


[114] H. Abburi, M. Shrivastava, and S. V. Gangashetty, “Improved multimodal sentiment detection using stressed regions

of audio,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, pp. 2834–2837, 2017, doi:

10.1109/TENCON.2016.7848560.


[115] A. M. Alkalbani, L. Gadhvi, B. Patel, F. K. Hussain, A. M. Ghamry, and O. K. Hussain, “Analysing cloud services

reviews using opining mining,” Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA, pp. 1124–1129, 2017, doi:

10.1109/AINA.2017.173.


[116] R. Rani and S. Tandon, “Chat Summarization and Sentiment Analysis Techniques in Data Mining,” Proc. - 4th Int.

Conf. Comput. Sci. ICCS 2018, pp. 102–106, 2019, doi: 10.1109/ICCS.2018.00025.


[117] S. Vanaja, “Aspect-Level Sentiment Analysis on E-Commerce Data,” 2018 Int. Conf. Inven. Res. Comput. Appl., no.

Icirca, pp. 1275–1279, 2018.


[118] U. Kumari, A. K. Sharma, and D. Soni, “Sentiment analysis of smart phone product review using SVM classification

technique,” 2017 Int. Conf. Energy, Commun. Data Anal. Soft Comput. ICECDS 2017, pp. 1469–1474, 2018, doi:

10.1109/ICECDS.2017.8389689.


[119] P. Pankaj, P. Pandey, M. Muskan, and N. Soni, “Sentiment Analysis on Customer Feedback Data: Amazon Product

Reviews,” Proc. Int. Conf. Mach. Learn. Big Data, Cloud Parallel Comput. Trends, Prespectives Prospect. Com.

2019, pp. 320–322, 2019, doi: 10.1109/COMITCon.2019.8862258.


[120] S. K. Bharti, R. Naidu, and K. S. Babu, “Hyperbolic Feature-based Sarcasm Detection in Tweets: A Machine

Learning Approach,” 2017 14th IEEE India Counc. Int. Conf. INDICON 2017, 2018, doi:

10.1109/INDICON.2017.8487712.


[121] E. Elmurngi and A. Gherbi, “An empirical study on detecting fake reviews using machine learning techniques,” 7th

Int. Conf. Innov. Comput. Technol. INTECH 2017, no. Intech, pp. 107–114, 2017, doi:

10.1109/INTECH.2017.8102442.


[122] S. R. D’souza and K. Sonawane, “Sentiment analysis based on multiple reviews by using machine learning

approaches,” Proc. 3rd Int. Conf. Comput. Methodol. Commun. ICCMC 2019, no. Iccmc, pp. 188–193, 2019, doi:

10.1109/ICCMC.2019.8819813.


[123] M. Trupthi, S. Pabboju, and G. Narasimha, “Sentiment analysis on twitter using streaming API,” Proc. - 7th IEEE Int.

Adv. Comput. Conf. IACC 2017, pp. 915–919, 2017, doi: 10.1109/IACCURACY2017.0186.


[124] V. S. Shirsat, R. S. Jagdale, and S. N. Deshmukh, “Document Level Sentiment Analysis from News Articles,” 2017

Int. Conf. Comput. Commun. Control Autom. ICCUBEA 2017, pp. 1–4, 2018, doi:

10.1109/ICCUBEA.2017.8463638.


[125] D. Y. Priyanka and R. Senthilkumar, “Sampling techniques for streaming dataset using sentiment analysis,” 2016 Int.

Conf. Recent Trends Inf. Technol. ICRTIT 2016, pp. 1–6, 2016, doi: 10.1109/ICRTIT.2016.7569580.


[126] Y. Han and K. K. Kim, “Sentiment analysis on social media using morphological sentence pattern model,” Proc. -

2017 15th IEEE/ACIS Int. Conf. Softw. Eng. Res. Manag. Appl. SERA 2017, pp. 79–84, 2017, doi:

10.1109/SERA.2017.7965710.


[127] F. M. T. Hossain, M. I. Hossain, and S. Nawshin, “Machine learning based class level prediction of restaurant

reviews,” 5th IEEE Reg. 10 Humanit. Technol. Conf. 2017, R10-HTC 2017, vol. 2018-Janua, pp. 420–423, 2018,

doi: 10.1109/R10-HTC.2017.8288989.


[128] P. Ray and A. Chakrabarti, “Twitter sentiment analysis for product review using lexicon method,” 2017 Int. Conf.

Data Manag. Anal. Innov. ICDMAI 2017, pp. 211–216, 2017, doi: 10.1109/ICDMAI.2017.8073512.


[129] N. Iqbal, A. M. Chowdhury, and T. Ahsan, “Enhancing the Performance of Sentiment Analysis by Using Different

Feature Combinations,” Int. Conf. Comput. Commun. Chem. Mater. Electron. Eng. IC4ME2 2018, pp. 1–4, 2018,

doi: 10.1109/IC4ME2.2018.8465673.


[130] S. R. Savanur and R. Sumathi, “Feature Based Sentiment Analysis of Compound Sentences,” 2017 2nd Int. Conf.

Emerg. Comput. Inf. Technol. ICECIT 2017, pp. 1–6, 2018, doi: 10.1109/ICECIT.2017.8453357.


[131] Y. Song, K. Gu, H. Li, and G. Sun, “A Lexical Updating Algorithm for Sentiment Analysis on Chinese Movie

Reviews,” Proc. - 5th Int. Conf. Adv. Cloud Big Data, CBD 2017, pp. 188–193, 2017, doi: 10.1109/CBD.2017.40.


[132] J. Wu, L. Du, and Y. Dang, “Research on the Impact of Consumer Review Sentiments from Different Websites on

Product Sales,” Proc. - 2018 IEEE 18th Int. Conf. Softw. Qual. Reliab. Secur. Companion, QRS-C 2018, pp. 332–

338, 2018, doi: 10.1109/QRS-C.2018.00065.


[133] R. Abinaya, P. Aishwaryaa, S. Baavana, and N. D. T. Selvi, “Automatic sentiment analysis of user reviews,” Proc. -

2016 IEEE Int. Conf. Technol. Innov. ICT Agric. Rural Dev. TIAR 2016, no. Tiar, pp. 158–162, 2016, doi:

10.1109/TIAR.2016.7801231.


[134] T. Lavanya, J. C. Miraclin Joyce Pamila, and K. Veningston, “Online review analytics using word alignment model

on Twitter data,” ICACCS 2016 - 3rd Int. Conf. Adv. Comput. Commun. Syst. Bringing to Table, Futur. Technol.

from Arround Globe, vol. 01, pp. 1–6, 2016, doi: 10.1109/ICACCS.2016.7586388.


[135] S. Dorle and N. Pise, “Political Sentiment Analysis through Social Media,” Proc. 2nd Int. Conf. Comput. Methodol.

Commun. ICCMC 2018, no. Iccmc, pp. 869–873, 2018, doi: 10.1109/ICCMC.2018.8487879.


[136] S. Atul Khedkar and S. K. Shinde, “Customer Review Analytics for Business Intelligence,” 2018 IEEE Int. Conf.

Comput. Intell. Comput. Res. ICCIC 2018, pp. 1–5, 2018, doi: 10.1109/ICCIC.2018.8782305.


[137] S. Adinarayana and E. Ilavarasan, “Classification techniques for sentiment discovery-A review,” Int. Conf. Signal

Process. Commun. Power Embed. Syst. SCOPES 2016 - Proc., pp. 396–400, 2017, doi:

10.1109/SCOPES.2016.7955860.


[138] C. Chauhan and S. Sehgal, “Sentiment classification for mobile reviews using KNIME,” 2018 Int. Conf. Comput.

Power Commun. Technol. GUCON 2018, pp. 548–553, 2019, doi: 10.1109/GUCON.2018.8674946.


[139] Y. M. Aye and S. S. Aung, “Enhanced Sentiment Classification for Informal Myanmar Text of Restaurant Reviews,”

Proc. - 2018 IEEE/ACIS 16th Int. Conf. Softw. Eng. Res. Manag. Appl. SERA 2018, pp. 31–36, 2018, doi:

10.1109/SERA.2018.8477231.


[140] N. Devasia and R. Sheik, “Feature extracted sentiment analysis of customer product reviews,” Proc. IEEE Int. Conf.

Emerg. Technol. Trends Comput. Commun. Electr. Eng. ICETT 2016, pp. 1–6, 2017, doi:

10.1109/ICETT.2016.7873646.


[141] R. Nagamanjula and A. Pethalakshmi, “A Machine Learning Based Sentiment Analysis by Selecting Features for

Predicting Customer Reviews,” Proc. 2nd Int. Conf. Intell. Comput. Control Syst. ICICCS 2018, no. Iciccs, pp.

1837–1843, 2019, doi: 10.1109/ICCONS.2018.8663153.


http://www.jcreview.com/?mno=97284

A Systematic Mapping Review: Sentiment Analysis In Higher Education Context

 


Abstract

Sentiment analysis has become increasingly a popular research area; it allows analyzing and understanding the students' opinions toward their institution to make more effective and better-targeted decisions. 

The objective of this study is to apply a systematic mapping review to investigate the current state-of-the-art on the application of sentiment analysis in the domain of higher education, and to identify the most common and successful techniques /methods that have been used. 

The current study was established through a systematic mapping review; therefore, the study's protocol was defined firstly, such as research questions, the search strategy, studies selection, information extraction, and how the study findings will be reported. 

Based on the criteria of the study, 16 related studies are selected and classified according to their application domains, platforms, techniques, and methods that have been used in the studies. 

The findings of the study showed that the adoption of the emerging area of data mining sentiment analysis in educational systems has a great potential in improving the quality of higher education institutions and evaluating the teaching process as well as teachers' performance. 

The main contribution of this study is the new classifications of many studies in higher education that may help in providing nearly a full image of the application of SA techniques, the related tools in higher education and the related areas. 

The study also found that applying specific SA techniques in the higher education field could offer the best means of solving certain learning problems and can be useful in developing teaching strategies and providing the required tools that institutions will be able to use for the purposes of continuous improvement.


https://www.archives.palarch.nl/index.php/jae/article/view/4779