Abstract
Parliamentary and legislative debate transcripts provide access to information concerning the opinions, positions and policy preferences of elected politicians.
They attract attention from researchers from a wide variety of backgrounds, from political and social sciences to computer science.
As a result, the problem of automatic sentiment and position-taking analysis has been tackled from different perspectives, using varying approaches and methods, and with relatively little collaboration or cross-pollination of ideas.
The existing research is scattered across publications from various fields and venues.
In this article we present the results of a systematic literature review of 61 studies, all of which address the automatic analysis of the sentiment and opinions expressed and positions taken by speakers in parliamentary (and other legislative) debates.
In this review, we discuss the available research with regard to the aims and objectives of the researchers who work on these problems, the automatic analysis tasks they undertake, and the approaches and methods they use.
We conclude by summarizing their findings, discussing the challenges of applying computational analysis to parliamentary debates, and suggesting possible avenues for further research.
REFERENCES:
1. Abercrombie, G., & Batista-Navarro, R. (2018). ‘Aye’ or ‘no’? Speech-level sentiment analysis of
Hansard UK parliamentary debate transcripts. In: Proceedings of the eleventh international confer-
ence on language resources and evaluation (LREC-2018). European Languages Resources Associa-
tion (ELRA), Miyazaki, Japan. https://www.aclweb.org/anthology/L18-1659.
2. Abercrombie, G., & Batista-Navarro, R.T. (2018). Identifying opinion-topics and polarity of parlia-
mentary debate motions. In: Proceedings of the 9th workshop on computational approaches to sub-
jectivity, sentiment and social media analysis. Association for Computational Linguistics, Brussels,
Belgium (pp. 280–285). https://doi.org/10.18653/v1/W18-6241. https://www.aclweb.org/anthology/
W18-6241.
3. Ahmadalinezhad, M., & Makrehchi, M. (2018). Detecting agreement and disagreement in political
debates. In R. Thomson, C. Dancy, A. Hyder, & H. Bisgin (Eds.), Social, cultural, and behavioral
modeling (pp. 54–60). Cham: Springer.
4. Akhmedova, S., Semenkin, E., & Stanovov, V. (2018). Co-operation of biology related algorithms
for solving opinion mining problems by using diferent term weighting schemes. In: K. Madani,
D. Peaucelle, O. Gusikhin (Eds.) Informatics in control, automation and robotics: 13th international
conference, ICINCO 2016 Lisbon, Portugal, 29-31 July, 2016 (pp. 73–90). Cham: Springer. https://
doi.org/10.1007/978-3-319-55011-4_4.
5. Allison, B. (2008). Sentiment detection using lexically-based classifers. In P. Sojka, A. Horák, I.
Kopeček, & K. Pala (Eds.), Text, speech and dialogue (pp. 21–28). Berlin: Springer.
6. Balahur, A., Kozareva, Z., & Montoyo, A. (2009). Determining the polarity and source of opinions
expressed in political debates. In A. Gelbukh (Ed.), Computational linguistics and intelligent text
processing (pp. 468–480). Berlin: Springer.
7. Bansal, M., Cardie, C., & Lee, L. (2008). The power of negative thinking: Exploiting label disagree-
ment in the min-cut classifcation framework. In: Coling 2008: Companion volume: Posters (pp.
15–18). Coling 2008 Organizing Committee, Manchester, UK. https://www.aclweb.org/anthology/
C08-2004.
8. Baturo, A., Dasandi, N., & Mikhaylov, S. J. (2017). Understanding state preferences with text as
data: Introducing the un general debate corpus. Research and Politics, 4(2), 2053168017712821.
https://doi.org/10.1177/2053168017712821.
9. Bhatia, S., P, D. (2018). Topic-specifc sentiment analysis can help identify political ideology. In:
Proceedings of the 9th workshop on computational approaches to subjectivity, sentiment and social
media analysis (pp. 79–84). Association for Computational Linguistics, Brussels, Belgium. https://
doi.org/10.18653/v1/W18-6212. https://www.aclweb.org/anthology/W18-6212.
10. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine
Learning Research, 3(Jan), 993–1022.
11. Bonica, A. (2016). A data-driven voter guide for US elections: Adapting quantitative measures of
the preferences and priorities of political elites to help voters learn about candidates. Journal of the
Social Sciences, 2(7), 11–32. https://doi.org/10.7758/RSF.2016.2.7.02. https://www.rsfournal.org/
content/2/7/11.
12. Budhwar, A., Kuboi, T., Dekhtyar, A., & Khosmood, F. (2018). Predicting the vote using legis-
lative speech. In: Proceedings of the 19th annual international conference on digital government
research: governance in the data age, dg.o ’18 (pp. 35:1–35:10). ACM, New York, NY, USA. https
://doi.org/10.1145/3209281.3209374.
13. Burfoot, C. (2008). Using multiple sources of agreement information for sentiment classifcation of
political transcripts. In: Proceedings of the Australasian language technology association workshop
2008 (pp. 11–18). Hobart, Australia. https://www.aclweb.org/anthology/U08-1003.
14. Burfoot, C., Bird, S., & Baldwin, T. (2011). Collective classifcation of congressional foor-debate
transcripts. In: Proceedings of the 49th annual meeting of the association for computational linguis-
tics: Human language technologies (pp. 1506–1515). Association for Computational Linguistics,
Portland, Oregon, USA. https://www.aclweb.org/anthology/P11-1151.
15. Burford, C., Bird, S., & Baldwin, T. (2015). Collective document classifcation with implicit inter-
document semantic relationships. In: Proceedings of the fourth joint conference on lexical and com-
putational semantics (pp. 106–116). Association for Computational Linguistics, Denver, Colorado.
https://doi.org/10.18653/v1/S15-1012. https://www.aclweb.org/anthology/S15-1012.
16. Chen, W., Zhang, X., Wang, T., Yang, B., & Li, Y. (2017). Opinion-aware knowledge graph for
political ideology detection. In: Proceedings of the 26th international joint conference on artifcial
intelligence, pp. 3647–3653.
17. Diermeier, D., Godbout, J. F., Yu, B., & Kaufmann, S. (2012). Language and ideology in congress.
British Journal of Political Science, 42(1), 31–55.
18. Duthie, R., & Budzynska, K. (2018). A deep modular rnn approach for ethos mining. In: Proceed-
ings of the twenty-seventh international joint conference on artifcial intelligence, (IJCAI-18), pp.
4041–4047.
19. Dzieciątko, M. (2019). Application of text analytics to analyze emotions in the speeches. In E.
Pietka, P. Badura, J. Kawa, & W. Wieclawek (Eds.), Information Technology in Biomedicine (pp.
525–536). Cham: Springer.
20. Frid-Nielsen, S. S. (2018). Human rights or security? Positions on asylum in european parliament
speeches. European Union Politics, 19(2), 344–362. https://doi.org/10.1177/1465116518755954.
21. Glavaš, G., Nanni, F., & Ponzetto, S.P. (2017). Unsupervised cross-lingual scaling of political texts.
In: Proceedings of the 15th conference of the European chapter of the association for computa-
tional linguistics: Volume 2, short papers (pp. 688–693). Association for Computational Linguis-
tics, Valencia, Spain. https://www.aclweb.org/anthology/E17-2109.
22. Glavaš, G., Nanni, F., & Ponzetto, S.P. (2019). Computational analysis of political texts: Bridging
research eforts across communities. In: Proceedings of the 57th annual meeting of the association
for computational linguistics: Tutorial abstracts (pp. 18–23). Association for Computational Lin-
guistics, Florence, Italy. https://doi.org/10.18653/v1/P19-4004. https://www.aclweb.org/anthology/
P19-4004.
23. Grimmer, J., & Stewart, B. M. (2013). Text as data: The promise and pitfalls of automatic content
analysis methods for political texts. Political Analysis, 21(3), 267–297.
24. Hirst, G., Riabinin, Y., & Graham, J. (2010). Party status as a confound in the automatic classifca-
tion of political speech by ideology. In: Proceedings of 10th international conference on statistical
analysis of textual data/10es Journées internationales d’Analyse statistique des Données Textuelles
(JADT 2010), Rome, pp. 731–742.
25. Honkela, T., Korhonen, J., Lagus, K., & Saarinen, E. (2014). Five-dimensional sentiment analysis
of corpora, documents and words. In T. Villmann, F. M. Schleif, M. Kaden, & M. Lange (Eds.),
Advances in self-organizing maps and learning vector quantization (pp. 209–218). Cham: Springer.
26. Hopkins, D. J., & King, G. (2010). A method of automated nonparametric content analysis for
social science. American Journal of Political Science, 54(1), 229–247. https://doi.org/10.111
1/j.1540-5907.2009.00428.x.
27. Iliev, I. R., Huang, X., & Gel, Y. R. (2019). Political rhetoric through the lens of non-parametric sta-
tistics: Are our legislators that diferent? Journal of the Royal Statistical Society Series A (Statistics
in Society), 182(2), 583–604. https://doi.org/10.1111/rssa.12421.
28. Iyyer, M., Enns, P., Boyd-Graber, J., & Resnik, P. (2014). Political ideology detection using recur-
sive neural networks. In: Proceedings of the 52nd annual meeting of the association for computa-
tional linguistics (Volume 1: Long Papers) (pp. 1113–1122). Association for Computational Lin-
guistics, Baltimore, Maryland. https://doi.org/10.3115/v1/P14-1105. https://www.aclweb.org/antho
logy/P14-1105
29. Jensen, J., Naidu, S., Kaplan, E., Wilse-Samson, L., Gergen, D., Zuckerman, M., & Spirling, A.
(2012). Political polarization and the dynamics of political language: Evidence from 130 years of
partisan speech [with comments and discussion]. Brookings Papers on Economic Activity, pp. 1–81.
30. Ji, Y., & Smith, N.A. (2017) Neural discourse structure for text categorization. In: Proceedings of
the 55th annual meeting of the association for computational linguistics (Volume 1: Long Papers)
(pp. 996–1005). Association for Computational Linguistics, Vancouver, Canada. https://doi.
org/10.18653/v1/P17-1092. https://www.aclweb.org/anthology/P17-1092.
31. Kaal, B., Maks, I., & van Elfrinkhof, A. (2014). From text to political positions: Text analysis across
disciplines (Vol. 55). Philadelphia: John Benjamins Publishing Company.
32. Kapočiūtė-Dzikienė, J., & Krupavičius, A. (2014). Predicting party group from the Lithuanian par-
liamentary speeches. Information Technology and Control, 43(3), 321–332.
33. Kaufman, D., Khosmood, F., Kuboi, T., & Dekhtyar, A. (2018). Learning alignments from legisla-
tive discourse. In: Proceedings of the 19th annual international conference on digital government
research: Governance in the data age, dg.o ’18 (pp. 119:1–119:2). ACM, New York, NY, USA.
https://doi.org/10.1145/3209281.3209413.
34. Kim, I. S., Londregan, J., & Ratkovic, M. (2018). Estimating spatial preferences from votes and text.
Political Analysis, 26(2), 210–229.
35. Lapponi, E., Søyland, M. G., Velldal, E., & Oepen, S. (2018). The talk of norway: A richly anno-
tated corpus of the norwegian parliament, 1998–2016. Language Resources and Evaluation, 52(3),
873–893. https://doi.org/10.1007/s10579-018-9411-5.
36. Laver, M., Benoit, K., & Garry, J. (2003). Extracting policy positions from political texts using
words as data. American Political Science Review, 97(2), 311–331.
37. Lefait, G., & Kechadi, T. (2010). Analysis of deputy and party similarities through hierarchical
clustering. In: 2010 fourth international conference on digital society (pp. 264–268). https://doi.
org/10.1109/ICDS.2010.49.
38. Li, X., Chen, W., Wang, T., & Huang, W. (2017). Target-specifc convolutional bi-directional lstm
neural network for political ideology analysis. In L. Chen, C. S. Jensen, C. Shahabi, X. Yang, & X.
Lian (Eds.), Web and Big Data (pp. 64–72). Cham: Springer.
39. Liu, B. (2012). Sentiment analysis and opinion mining, synthesis lectures on human language tech-
nologies (Vol. 5). San Rafael: Morgan & Claypool Publishers.
40. Lowe, W., & Benoit, K. (2013). Validating estimates of latent traits from textual data using human
judgment as a benchmark. Political Analysis, 21(3), 298–313.
41. Martineau, J., Finin, T., Joshi, A., & Patel, S. (2009). Improving binary classifcation on text prob-
lems using diferential word features. In: Proceedings of the 18th ACM conference on information
and knowledge management, CIKM ’09 (pp. 2019–2024). ACM, New York, NY, USA. https://doi.
org/10.1145/1645953.1646291.
42. Menini, S., Nanni, F., Ponzetto, S.P., & Tonelli, S. (2017). Topic-based agreement and disagreement
in US electoral manifestos. In: Proceedings of the 2017 conference on empirical methods in natu-
ral language processing (pp. 2938–2944). Association for Computational Linguistics, Copenhagen,
Denmark. https://doi.org/10.18653/v1/D17-1318. https://www.aclweb.org/anthology/D17-1318.
43. Menini, S., & Tonelli, S. (2016). Agreement and disagreement: Comparison of points of view in the
political domain. In: Proceedings of COLING 2016, the 26th international conference on computa-
tional linguistics: Technical papers (pp. 2461–2470). The COLING 2016 Organizing Committee,
Osaka, Japan. https://www.aclweb.org/anthology/C16-1232.
44. Mikhaylov, S., Laver, M., & Benoit, K. (2008). Coder reliability and misclassifcation in compara-
tive manifesto project codings. In: 66th MPSA annual national conference.
45. Mohammad, S. M., Sobhani, P., & Kiritchenko, S. (2017). Stance and sentiment in tweets. ACM
Transactions on Internet Technology, 17(3), 26:1–26:23. https://doi.org/10.1145/3003433.
46. Moher, D., Liberati, A., Tetzlaf, J., & Altman, D. G. (2009). The PRISMA group: Preferred report-
ing items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal
Medicine, 151(4), 264–269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135.
47. Monroe, B. L., Colaresi, M. P., & Quinn, K. M. (2008). Fightin’words: Lexical feature selection and
evaluation for identifying the content of political confict. Political Analysis, 16(4), 372–403.
48. Naderi, N., & Hirst, G. (2016). Argumentation mining in parliamentary discourse. In M. Baldoni,
C. Baroglio, F. Bex, F. Grasso, N. Green, M. R. Namazi-Rad, M. Numao, & M. T. Suarez (Eds.),
Principles and practice of multi-agent systems (pp. 16–25). Cham: Springer.
49. Nanni, F., Zirn, C., Glavaš, G., Eichorst, J., & Ponzetto, S.P. (2016) Topfsh: topic-based analysis of
political position in us electoral campaigns. In: PolText 2016: The international conference on the
advances in computational analysis of political text: proceedings of the conference.
50. Nguyen, V.A., Boyd-Graber, J., Resnik, P., & Miler, K. (2015). Tea party in the house: A hierarchi-
cal ideal point topic model and its application to republican legislators in the 112th congress. In:
Proceedings of the 53rd annual meeting of the association for computational linguistics and the
7th international joint conference on natural language processing (Volume 1: Long papers) (pp.
1438–1448). Association for Computational Linguistics, Beijing, China. https://doi.org/10.3115/v1/
P15-1139. https://www.aclweb.org/anthology/P15-1139.
51. Nguyen, V. A., Ying, J. L., & Resnik, P. (2013). Lexical and hierarchical topic regression. In C. J.
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural
information processing systems 26 (pp. 1106–1114). Curran Associates Inc. http://papers.nips.cc/
paper/5163-lexical-and-hierarchical-topic-regression.pdf.
52. Onyimadu, O., Nakata, K., Wilson, T., Macken, D., & Liu, K. (2014). Towards sentiment analysis
on parliamentary debates in hansard. In W. Kim, Y. Ding, & H. G. Kim (Eds.), Semantic technology
(pp. 48–50). Cham: Springer.
53. Owen, E. (2017). Exposure to ofshoring and the politics of trade liberalization: Debate and votes on
free trade agreements in the US house of representatives, 2001–2006. International Studies Quar-
terly, 61(2), 297–311. https://doi.org/10.1093/isq/sqx020.
54. Pang, B., & Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends® in
Information Retrieval, 2(1–2), 1–135. https://doi.org/10.1561/1500000011.
55. Plantié, M., Roche, M., Dray, G., & Poncelet, P. (2008). Is a voting approach accurate for opinion
mining? In I. Y. Song, J. Eder, & T. M. Nguyen (Eds.), Data warehousing and knowledge discovery
(pp. 413–422). Berlin: Springer.
56. Proksch, S. O., Lowe, W., Wäckerle, J., & Soroka, S. (2019). Multilingual sentiment analysis: A
new approach to measuring confict in legislative speeches. Legislative Studies Quarterly, 44(1),
97–131. https://doi.org/10.1111/lsq.12218.
57. Proksch, S. O., & Slapin, J. B. (2010). Position taking in European parliament speeches. British
Journal of Political Science, 40(3), 587–611.
58. Proksch, S. O., & Slapin, J. B. (2015). The politics of parliamentary debate. Cambridge: Cambridge
University Press.
59. Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A comprehensive grammar of the eng-
lish language. London: Longman.
60. Rauh, C. (2018). Validating a sentiment dictionary for german political language—a workbench
note. Journal of Information Technology and Politics, 15(4), 319–343. https://doi.org/10.1080/19331
681.2018.1485608.
61. Rheault, L. (2016) Expressions of anxiety in political texts. In Proceedings of the frst workshop on
nlp and computational social science (pp. 92–101). Association for Computational Linguistics, Aus-
tin, Texas. https://doi.org/10.18653/v1/W16-5612. https://www.aclweb.org/anthology/W16-5612.
62. Rheault, L., Beelen, K., Cochrane, C., & Hirst, G. (2016). Measuring emotion in parliamentary
debates with automated textual analysis. PLoS One, 11(12), 1–18. https://doi.org/10.1371/journ
al.pone.0168843.
63. Richards, L. (2005). Handling qualitative data: A practical guide. London: Sage Publications.
64. Rudkowsky, E., Haselmayer, M., Wastian, M., Jenny, M., Emrich, Š., & Sedlmair, M. (2018). More
than bags of words: Sentiment analysis with word embeddings. Communication Methods and Meas-
ures, 12(2–3), 140–157. https://doi.org/10.1080/19312458.2018.1455817.
65. Sakamoto, T., & Takikawa, H. (2017). Cross-national measurement of polarization in political dis-
course: Analyzing foor debate in the US the japanese legislatures. In 2017 IEEE international con-
ference on big data (Big Data) (pp. 3104–3110). https://doi.org/10.1109/BigData.2017.8258285.
66. Salah, Z. (2014). Machine learning and sentiment analysis approaches for the analysis of parlia-
mentary debates. Ph.D. thesis, University of Liverpool.
67. Salah, Z., Coenen, F., & Grossi, D. (2013). Extracting debate graphs from parliamentary transcripts:
A study directed at uk house of commons debates. In Proceedings of the fourteenth international
conference on artifcial intelligence and law, ICAIL ’13 (pp. 121–130). ACM, New York, NY, USA.
https://doi.org/10.1145/2514601.2514615.
68. Salah, Z., Coenen, F., & Grossi, D. (2013). Generating domain-specifc sentiment lexicons for opin-
ion mining. In H. Motoda, Z. Wu, L. Cao, O. Zaiane, M. Yao, & W. Wang (Eds.), Advanced data
mining and applications (pp. 13–24). Berlin: Springer.
69. Schwarz, D., Traber, D., & Benoit, K. (2017). Estimating intra-party preferences: Comparing
speeches to votes. Political Science Research and Methods, 5(2), 379–396.
70. Seligman, M. E. P. (2012). Flourish: A visionary new understanding of happiness and well-being.
New York: Simon and Schuster.
71. Sim, Y., Acree, B.D.L., Gross, J.H., & Smith, N.A. (2013). Measuring ideological proportions in
political speeches. In Proceedings of the 2013 conference on empirical methods in natural language
processing (pp. 91–101). Association for Computational Linguistics, Seattle, Washington, USA.
https://www.aclweb.org/anthology/D13-1010.
72. Sokolova, M., & Lapalme, G. (2008). Verbs speak loud: Verb categories in learning polarity and strength
of opinions. In S. Bergler (Ed.), Advances in artifcial intelligence (pp. 320–331). Berlin: Springer.
73. Taddy, M. (2013). Multinomial inverse regression for text analysis. Journal of the American Statisti-
cal Association, 108(503), 755–770.
74. Thomas, M., Pang, B., & Lee, L. (2006). Get out the vote: Determining support or opposition from
congressional foor-debate transcripts. In Proceedings of the 2006 conference on empirical methods
in natural language processing (pp. 327–335). Association for Computational Linguistics, Sydney,
Australia. https://www.aclweb.org/anthology/W06-1639.
75. van der Zwaan, J.M., Marx, M., & Kamps, J. (2016). Validating cross-perspective topic modeling
for extracting political parties’ positions from parliamentary proceedings. In Proceedings of the
twenty-second European conference on artifcial intelligence, ECAI’16 (pp. 28–36). IOS Press,
Amsterdam, The Netherlands, The Netherlands. https://doi.org/10.3233/978-1-61499-672-9-28.
76. Vilares, D., & He, Y. (2017). Detecting perspectives in political debates. In Proceedings of the 2017
conference on empirical methods in natural language processing (pp. 1573–1582). Association for
Computational Linguistics, Copenhagen, Denmark. https://doi.org/10.18653/v1/D17-1165. https://
www.aclweb.org/anthology/D17-1165.
77. Yadollahi, A., Shahraki, A. G., & Zaiane, O. R. (2017). Current state of text sentiment analy-
sis from opinion to emotion mining. ACM Computing Surveys, 50(2), 25:1–25:33. https://doi.
org/10.1145/3057270.
78. Yessenalina, A., Yue, Y., & Cardie, C. (2010). Multi-level structured models for document-level
sentiment classifcation. In Proceedings of the 2010 conference on empirical methods in natural
language processing (pp. 1046–1056). Association for Computational Linguistics, Cambridge, MA.
https://www.aclweb.org/anthology/D10-1102.
79. Yogatama, D., Kong, L., & Smith, N.A. (2015). Bayesian optimization of text representations. In
Proceedings of the 2015 conference on empirical methods in natural language processing (pp.
2100–2105). Association for Computational Linguistics, Lisbon, Portugal. https://doi.org/10.18653/
v1/D15-1251. https://www.aclweb.org/anthology/D15-1251.
80. Yogatama, D., & Smith, N. (2014). Making the most of bag of words: Sentence regularization with
alternating direction method of multipliers. In International conference on machine learning, pp.
656–664.
81. Yogatama, D., & Smith, N.A. (2014). Linguistic structured sparsity in text categorization. In Pro-
ceedings of the 52nd annual meeting of the association for computational linguistics (Volume 1:
Long Papers) (pp. 786–796). Association for Computational Linguistics, Baltimore, Maryland. https
://doi.org/10.3115/v1/P14-1074. https://www.aclweb.org/anthology/P14-1074.
https://link.springer.com/article/10.1007%2Fs42001-019-00060-w