.
Abstract
In recent years, due to the availability of voluminous data on web for Indian languages, it has become an important task to analyze this data to retrieve useful information.
Because of the growth of Indian language content, it is beneficial to utilize this explosion of data for the purpose of sentiment analysis.
This research depicts a systematic review in the field of sentiment analysis in general and Indian languages specifically.
The current status of Indian languages in sentiment analysis is classified according to the Indian language families.
The periodical evolution of Indian languages in the field of sentiment analysis, sources of selected publications on the basis of their relevance are also described.
Further, taxonomy of Indian languages in sentiment analysis based on techniques, domains, sentiment levels and classes has been presented.
This research work will assist researchers in finding the available resources such as annotated datasets, pre-processing linguistic and lexical resources in Indian languages for sentiment analysis and will also support in selecting the most suitable sentiment analysis technique in a specific domain along with relevant future research directions.
In case of resource-poor Indian languages with morphological variations, one encounters problems of performing sentiment analysis due to unavailability of annotated resources, linguistic and lexical tools.
Therefore, to provide efficient performance using existing sentiment analysis techniques, the aforementioned issues should be addressed effectively.
.
REFERENCES
(2012) Shallow parsers, Language Technologies Research Centre (LTRC), IIIT Hyderabad. http://ltrc.iiit.ac.in/showfile.php?filename=downloads/shallow_parser.php. Accessed 25 June 2017
(2014) Indo-Aryan languages. http://www.indianetzone.com/11/indo_aryan_languages.htm. Accessed 22 June 2017
(2015) Indian language families. http://www.indianetzone.com/39/indian_language_families.htm. Accessed 20 June 2017
(2017) Online education in India: 2021. https://assets.kpmg.com/content/dam/kpmg/in/pdf/2017/05/Online-Education-in-India-2021.pdf. Accessed 15 June 2017
Akhtar MS, Ekbal A, Bhattacharyya P (2016a) Aspect based sentiment analysis: category detection and sentiment classification for Hindi. In: 17th International conference on intelligent text processing and computational linguistics, pp 1–12
Akhtar MS, Ekbal A, Bhattacharyya P (2016b) Aspect based sentiment analysis in Hindi: resource creation and evaluation. In: Proceedings of the 10th international conference on language resources and evaluation, pp 1–7
Akhtar MS, Kumar A, Ekbal A, Bhattacharyya P (2016c) A hybrid deep learning architecture for sentiment analysis. In: Proceedings of the 26th international conference on computational linguistics, pp 482–493
Anagha M, Kumar RR, Sreetha K, Rajeev R, Raj PR (2014) Lexical resource based hybrid approach for cross domain sentiment analysis in Malayalam. Int J Eng Sci 15:18–21
Anagha M, Kumar RR, Sreetha K, Raj PR (2015) Fuzzy logic based hybrid approach for sentiment analysisl of malayalam movie reviews. In: International conference on signal processing. Informatics, communication and energy systems. IEEE, pp 1–4
Arora P (2013) Sentiment analysis for Hindi language. MS by Research in Computer Science
Arora P, Kaur B (2015) Sentiment analysis of political reviews in Punjabi language. Int J Comput Appl
126(14):1–4
Asghar MZ, Khan A, Zahra SR, Ahmad S, Kundi FM (2017) Aspect-based opinion mining framework using heuristic patterns. Clust Comput. https://doi.org/10.1007/s10586-017-1096-9
Asghar MZ, Khan A, Khan F, Kundi FM (2018a) Rift: a rule induction framework for twitter sentiment analysis. Arab J Sci Eng 43(2):857–877
Asghar MZ, Kundi FM, Ahmad S, Khan A, Khan F (2018b) T-saf: Twitter sentiment analysis framework using a hybrid classification scheme. Expert Syst 35(1):1–19
Baccianella S, Esuli A, Sebastiani F (2010) Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. Proc Lang Resour Eval 10:2200–2204
Bakliwal A, Arora P, Varma V (2012) Hindi subjective lexicon: a lexical resource for Hindi polarity classification. In: Proceedings of the eight international conference on language resources and evaluation, pp 1189–1196
Balamurali A, Joshi A, Bhattacharyya P (2012) Cross-lingual sentiment analysis for Indian languages using linked Wordnets. In: Proceedings of 24th international conference on computational linguistics: posters, pp 73–82
Bansal N, Ahmed UZ, Mukherjee A (2013) Sentiment analysis in Hindi. Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur, India, pp 1–10
Bhattacharyya P (2017) Indowordnet. In: The WordNet in Indian languages. Springer, pp 1–18 Chand S (2016) Indian languages: classification of Indian languages. http://www.yourarticlelibrary.com/language/indian-languages-classification-of-indian-languages/19813/. Accessed 22 June 2017
Chaudhari CV, Khaire AV, Murtadak RR, Sirsulla KS (2017) Sentiment analysis in Marathi using Marathi WordNet. Imp J Interdiscip Res 3(4):1253–1256
Das A, Bandyopadhyay S (2010a) Phrase-level polarity identification for Bangla. Int J Comput Linguist Appl1(1–2):169–182
Das A, Bandyopadhyay S (2010b) Sentiwordnet for Bangla. Knowl Shar Event Task 2:1–9
Das A, Bandyopadhyay S (2010c) Sentiwordnet for Indian languages. In: Asian federation for natural language processing, pp 56–63
Deepamala N, Kumar R (2015) Polarity detection of Kannada documents. In: International advance computing conference. IEEE, pp 764–767
Esuli A, Sebastiani F (2007) Sentiwordnet: a high-coverage lexical resource for opinion mining. In: International conference on language resources and evaluation, pp 1–26
Fondekar A, Pawar JD, Karmali R (2016) Konkani sentiwordnet: resource for sentiment analysis using supervised learning approach. In: Workshop on Indian language data: resources and evaluation (WILDRE3), Portoroz, Slovenia, pp 55–59
Ghosal T, Das SK, Bhattacharjee S (2015) Sentiment analysis on (Bengali horoscope) corpus. In: Annual India conference (INDICON). IEEE, pp 1–6
Govindan R, Haroon RP (2016) A survey on sentiment and emotion classification in Indo-Dravidian languages. Imp J Interdiscip Res 3(1):1040–1042
Gupta CP, Bal BK (2015) Detecting sentiment in Nepali texts: a bootstrap approach for sentiment analysis of texts in the Nepali language. In: International conference on cognitive computing and information processing. IEEE, pp 1–4
Hasan KA, Rahman M et al (2014) Sentiment detection from Bangla text using contextual valency analysis. In: 17th International conference on computer and information technology. IEEE, pp 292–295
Hassan A, Amin MR, Al Azad AK, Mohammed N (2016) Sentiment analysis on Bangla and Romanized Bangla text using deep recurrent models. In: International workshop on computational intelligence. IEEE, pp 51–56
Hegde Y, Padma S (2015) Sentiment analysis for Kannada using mobile product reviews: a case study. In: International on advance computing conference. IEEE, pp 822–827
Hegde Y, Padma S (2017) Sentiment analysis using random forest ensemble for mobile product reviews in Kannada. In: 7th international on advance computing conference. IEEE, pp 777–782
Jayan P, Nair DS, Elizabeth Jisha S (2015) A subjective feature extraction for sentiment analysis in Malayalam language. Int J Eng Sci 14:1–4
Jena MK, Chandra BR (2014) Opinion mining for online Oriya text. Eur J Acad Essays 44–48
Jha V, Manjunath N, Shenoy PD, Venugopal K, Patnaik LM (2015) Homs: Hindi opinion mining system. In: 2nd International conference on recent trends in information systems. IEEE, pp 366–371
Joshi A, Balamurali A, Bhattacharyya P (2010) A fall-back strategy for sentiment analysis in Hindi: a case study. In: Proceedings of the 8th international conference on natural language processing, pp 1–6
Kaur A, Gupta V (2014a) N-gram based approach for opinion mining of Punjabi text. In: International workshop on multi-disciplinary trends in artificial intelligence. Springer, pp 81–88
Kaur A, Gupta V (2014b) Proposed algorithm of sentiment analysis for Punjabi text. J Emerg Technol Web Intell 6(2):180–183
Kaur J, Saini JR (2014) A study and analysis of opinion mining research in Indo-Aryan, Dravidian and Tibeto-Burman language families. Int J Data Min Emerg Technol 4(2):53–60
Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engineering. EBSE technical report 2
Kumar A, Kohail S, Ekbal A, Biemann C (2015a) Iit-tuda: system for sentiment analysis in Indian languages using lexical acquisition. In: International conference on mining intelligence and knowledge exploration. Springer, pp 684–693
Kumar KA, Rajasimha N, Reddy M, Rajanarayana A, Nadgir K (2015b) Analysis of users sentiments from Kannada web documents. Procedia Comput Sci 54:247–256
Kumar SS, Premjith B, Kumar MA, Soman K (2015c) Amrita_cen-nlp@ sail2015: sentiment analysis in Indian language using regularized least square approach with randomized feature learning. In: International conference on mining intelligence and knowledge exploration. Springer, pp 671–683
Miranda DT, Mascarenhas M (2016) Kop: an opinion mining system in Konkani. In: International conference on recent trends in electronics. Information and communication technology. IEEE, pp 702–705
Mittal N, Agarwal B, Chouhan G, Bania N, Pareek P (2013) Sentiment analysis of Hindi review based on negation and discourse relation. In: Proceedings of international joint conference on natural language processing, pp 45–50
Mukhtar N, Khan MA (2017) Urdu sentiment analysis using supervised machine learning approach. Int J Pattern Recogn Artif Intell 32(02):1–15
Mukhtar N, Khan MA, Chiragh N (2017) Effective use of evaluation measures for the validation of best classifier in Urdu sentiment analysis. Cogn Comput 9(4):446–456
Mukhtar N, Khan MA, Chiragh N (2018a) Lexicon based approach outperforms supervised machine learning approach for Urdu sentiment analysis in multiple domains. Telemat Inform 35(8):2173–2183
Mukhtar N, Khan MA, Chiragh N, Nazir S (2018b) Identification and handling of intensifiers for enhancing accuracy of Urdu sentiment analysis. Expert Syst 35(6):1–12
Mukku SS, Choudhary N, Mamidi R (2016) Enhanced sentiment classification of Telugu text using ml techniques. In: SAAIP@ 25th international joint conference on artificial intelligence, pp 29–34
Naidu R, Bharti SK, Babu KS, Mohapatra RK (2017) Sentiment analysis using Telugu sentiwordnet. In: International conference on wireless communications signal processing and networking, pp 1–5
Nair DS, Jayan JP, Sherly E et al (2014) Sentima-sentiment extraction for Malayalam. In: International conference on advances in computing, communications and informatics. IEEE, pp 1719–1723
Nair DS, Jayan JP, Rajeev R, Sherly E (2015) Sentiment analysis of Malayalam film review using machine learning techniques. In: International conference on advances in computing, communications and informatics. IEEE, pp 2381–2384
Nivedhitha E, Sanjay S, Anand Kumar M, Soman K (2016) Unsupervised word embedding based polarity detection for Tamil tweets. Int J Comput Technol Appl 9(10):4631–4638
Nongmeikapam K, Khangembam D, Hemkumar W, Khuraijam S, Bandyopadhyay S (2014) Verb based manipuri sentiment analysis. Int J Nat Lang Comput 3(3):113–118
Pandey P, Govilkar S (2015) A framework for sentiment analysis in Hindi using HSWN. Int J Comput Appl 119(19):23–26
Pang B, Lee L et al (2008) Opinion mining and sentiment analysis. Found Trends Inf RetR 2(1–2):1–135
Patra BG, Das D, Das A, Prasath R (2015) Shared task on sentiment analysis in Indian languages (sail) tweets-an overview. In: International conference on mining intelligence and knowledge exploration. Springer, pp 650–655
Phani S, IIEST S, Lahiri S, Biswas A (2016) Sentiment analysis of tweets in three Indian languages. In: Proceedings of the 6th workshop on south and southeast Asian natural language processing, vol 1001, pp 93–102
Prasad SS, Kumar J, Prabhakar DK, Pal S (2015) Sentiment classification: an approach for Indian language tweets using decision tree. In: International conference on mining intelligence and knowledge exploration. Springer, pp 656–663
Rani S, Kumar P (2017) A sentiment analysis system to improve teaching and learning. Computer 50(5):36–43
Rani S, Kumar P (2018a) Deep learning based sentiment analysis using convolution neural network. Arab J Sci Eng. https://doi.org/10.1007/s13369-018-3500-z
Rani S, Kumar P (2018b) A sentiment analysis system for social media using machine learning techniques:social enablement. Digit Sch Hum. https://doi.org/10.1093/llc/fqy037
Rehman ZU, Bajwa IS (2016) Lexicon-based sentiment analysis for Urdu language. In: Sixth international conference on innovative computing technology. IEEE, pp 497–501
Rohini V, Thomas M, Latha C (2016) Domain based sentiment analysis in regional language-Kannada using machine learning algorithm. In: International conference on recent trends in electronics, information and communication technology. IEEE, pp 503–507
Sahu S, Behera P, Mohapatra D, Rakesh C (2016a) Information retrieval in web for an Indian language: an Odia language sentimental analysis context. Int J Comput Technol Appl 9(22):249–256
Sahu SK, Behera P, Mohapatra D, Balabantaray RC (2016b) Sentiment analysis for Odia language using supervised classifier: an information retrieval in Indian language initiative. CSI Trans ICT 4(2–4):111–115
Sarkar K, Chakraborty S (2015) A sentiment analysis system for Indian language tweets. In: International conference on mining intelligence and knowledge exploration. Springer, pp 694–702
Se S, Vinayakumar R, Kumar MA, Soman K (2015) Amrita-cen@ sail2015: Sentiment analysis in Indian languages. In: International conference on mining intelligence and knowledge exploration. Springer, pp 703–710
Se S, Vinayakumar R, Kumar MA, Soman K (2016) Predicting the sentimental reviews in tamil movie using machine learning algorithms. Indian J Sci Technol 9(45):1–5
Seshadri S, Madasamy AK, Padannayil SK (2016) Analyzing sentiment in indian languages micro text using recurrent neural network. IIOAB 7:313–318
Sharma P, Moh TS (2016) Prediction of Indian election using sentiment analysis on Hindi twitter. In: International conference on big data. IEEE, pp 1966–1971
Sharma R, Bhattacharyya P (2014) A sentiment analyzer for Hindi using Hindi Senti Lexicon. In: 11th International conference on natural language processing, pp 1–6
Sharma R, Nigam S, Jain R (2014) Polarity detection movie reviews in Hindi language, pp 1–9. arXiv preprint arXiv:1409.3942
Sharma Y, Mangat V, Kaur M (2015) A practical approach to sentiment analysis of Hindi tweets. In: 1st International conference on next generation computing technologies. IEEE, pp 677–680
Sharmista A, Ramaswami M (2016) Tree based opinion mining in Tamil for product recommendations using R. Int J Comput Intell Inf 6(2):108–116
Syed AZ, Aslam M, Martinez-Enriquez AM (2010) Lexicon based sentiment analysis of Urdu text using SentiUnits. In: Mexican international conference on artificial intelligence. Springer, pp 32–43
Syed AZ, Aslam M, Martinez-Enriquez AM (2011) Sentiment analysis of Urdu language: handling phrase-level negation. In: Mexican international conference on artificial intelligence. Springer, pp 382–393
Syed AZ, Aslam M, Martinez-Enriquez AM (2014) Associating targets with sentiunits: a step forward in sentiment analysis of Urdu text. Artif Intell Rev 41(4):535–561
Thapa LBR, Bal BK (2016) Classifying sentiments in Nepali subjective texts. In: 7th International conference on information, intelligence, systems and applications. IEEE, pp 1–6
Thulasi P, Usha K (2016) Aspect polarity recognition of movie and product reviews in Malayalam. In: International conference on next generation intelligent systems. IEEE, pp 1–5
Venugopalan M, Gupta D (2015) Sentiment classification for Hindi tweets in a constrained environment augmented using tweet specific features. In: International conference on mining intelligence and knowledge exploration. Springer, pp 664–670
https://doi.org/10.1007/s10462-018-9670-y